Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)


On Laplace transforms near the origin

Author: R. Wong
Journal: Math. Comp. 29 (1975), 573-576
MSC: Primary 44A10
MathSciNet review: 0367564
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ f(t)$ be locally integrable on $ [0,\infty )$ and let $ L\{ f\} (s)$ denote the Laplace transform of $ f(t)$. In this note, we prove that if $ f(t) \sim {t^{ - \beta }}\Sigma _{n = 0}^\infty {a_n}{(\log t)^{ - n}}$ as $ t \to \infty $, where $ 0 \leqslant \operatorname{Re} \beta < 1$, then $ L\{ f\} (s) \sim {s^{\beta - 1}}\Sigma _{n = 0}^\infty {c_n}{(\log 1/s)^{ - n}}$ as $ s \to 0$ in $ \vert\arg s\vert \leqslant \pi /2 - \Delta $, the $ {c_n}$ being constants.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 44A10

Retrieve articles in all journals with MSC: 44A10

Additional Information

PII: S 0025-5718(1975)0367564-1
Keywords: Laplace transform, asymptotic expansion, Ramanujan function
Article copyright: © Copyright 1975 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia