Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Complex zeros of the Jonquière or polylogarithm function

Authors: B. Fornberg and K. S. Kölbig
Journal: Math. Comp. 29 (1975), 582-599
MSC: Primary 10H05; Secondary 33A70
MathSciNet review: 0369278
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Complex zero trajectories of the function

$\displaystyle F(x,s) = \sum\limits_{k = 1}^\infty {\frac{{{x^k}}}{{{k^s}}}} $

are investigated for real x with $ \vert x\vert < 1$ in the complex s-plane. It becomes apparent that there exist several classes of such trajectories, depending on their behaviour for $ \vert x\vert \to 1$. In particular, trajectories are found which tend towards the zeros of the Riemann zeta function $ \zeta (s)$ as $ x \to - 1$, and approach these zeros closely as $ x \to 1 - \rho $ for small but finite $ \rho > 0$. However, the latter trajectories appear to descend to the point $ s = 1$ as $ \rho \to 0$. Both, for $ x \to - 1$ and $ x \to 1$, there are trajectories which do not tend towards zeros of $ \zeta (s)$. The asymptotic behaviour of the trajectories for $ \vert x\vert \to 0$ is discussed. A conjecture of Pickard concerning the zeros of $ F(x,s)$ is shown to be false.

References [Enhancements On Off] (What's this?)

  • [1] Wilhelm Magnus, Fritz Oberhettinger, and Raj Pal Soni, Formulas and theorems for the special functions of mathematical physics, Third enlarged edition. Die Grundlehren der mathematischen Wissenschaften, Band 52, Springer-Verlag New York, Inc., New York, 1966. MR 0232968
  • [2] A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER & F. G. TRICOMI, Higher Trancendental Functions, vol. I, McGraw-Hill, New York, 1953. MR 15, 419.
  • [3] R. B. Dingle, Asymptotic expansions: their derivation and interpretation, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], London-New York, 1973. MR 0499926
  • [4] L. Lewin, Dilogarithms and associated functions, Foreword by J. C. P. Miller, Macdonald, London, 1958. MR 0105524
  • [5] N. NIELSEN, "Der Eulersche Dilogarithmus und seine Verallgemeinerungen," Nova Acta Leopoldina Halle, v. 90, 1909, pp. 123-211.
  • [6] Gerd Wechsung, Lineare Funktionalgleichungen von Polylogarithmen, Wiss. Z. Friedrich-Schiller-Univ. Jena/Thüringen 14 (1965), 401–408 (German). MR 0231083
  • [7] Wilhelm Maier and Helmut Kiesewetter, Funktionalgleichungen mit analytischen Lösungen, Vandenhoeck & Ruprecht, Göttingen-Zurich, 1971 (German). Studia Mathematica/Mathematische Lehrbücher, Band XX. MR 0324007
  • [8] D. MAISON & A. PETERMANN, "Subtracted generalized polylogarithms and the SINAC program," Comput. Phys. Comm., v. 7, 1974, pp. 121-134.
  • [9] Gerd Wechsung, Logarithmische Integrale, Publ. Math. Debrecen 14 (1967), 255–271 (German). MR 0223607
  • [10] K. S. Kölbig, J. A. Mignaco, and E. Remiddi, On Nielsen’s generalized polylogarithms and their numerical calculation, Nordisk Tidskr. Informationsbehandling (BIT) 10 (1970), 38–73. MR 0285750
  • [11] D. Jacobs and F. Lambert, On the numerical calculation of polylogarithms, Nordisk Tidskr. Informationsbehandling (BIT) 12 (1972), 581–585. MR 0323075
  • [12] R. H. Barlow, Convergent continued fraction approximants to generalised polylogarithms, Nordisk Tidskr. Informationsbehandling (BIT) 14 (1974), 112–116. MR 0331717
  • [13] W. F. Pickard, On polylogarithms, Publ. Math. Debrecen 15 (1968), 33–43. MR 0237852
  • [14] A. KOPPÁNYI, NEWTON-Solution of Simultaneous Non-Linear Equations, CERN 7600 Program Library C400, 1972 (unpublished).
  • [15] C. B. Haselgrove and J. C. P. Miller, Tables of the Riemann zeta function, Royal Society Mathematical Tables, Vol. 6, Cambridge University Press, New York, 1960. MR 0117905
  • [16] G. A. ERSKINE & K. S. KÖLBIG, CGAUSS-Complex Integration Along a Line Segment, CERN 7600 Program Library D113, 1970 (unpublished).
  • [17] D. R. Hartree, Numerical analysis. 2nd ed, Oxford University Press, New York, 1958. MR 0100335
  • [18] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1986. Edited and with a preface by D. R. Heath-Brown. MR 882550
  • [19] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
  • [20] I. M. Ryshik and I. S. Gradšteĭn, Summen-, Produkt- und Integral-tafeln, VEB Deutscher Verlag der Wissenschaften, Berlin, 1957 (German). MR 0112266

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10H05, 33A70

Retrieve articles in all journals with MSC: 10H05, 33A70

Additional Information

Keywords: Jonquière function, polylogarithms, Lerch's transcendent, Fermi-Dirac integrals, Bose-Einstein integrals, Riemann zeta function, Dirichlet series, complex zeros
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society