A numerical comparison of integral equations of the first and second kind for conformal mapping
Authors:
John K. Hayes, David K. Kahaner and Richard G. Kellner
Journal:
Math. Comp. 29 (1975), 512521
MSC:
Primary 65E05; Secondary 30A28
MathSciNet review:
0371036
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Two methods for computing numerical conformal mappings are compared. The first, due to Symm, uses a Fredholm integral equation of the first kind while the other, due to Lichtenstein, uses a Fredholm integral equation of the second kind. The two methods are tested on ellipses with different ratios of major to minor axes. The method based on the integral equation of the second kind is superior if the ratio is less than or equal to 2.5. The opposite is true if the ratio is greater than or equal to 10. Similar results are obtained for other regions.
 [1]
G.
Birkhoff, D.
M. Young, and E.
H. Zarantonello, Numerical methods in conformal mapping,
Proceedings of Symposia in Applied Mathematics, vol. IV, Fluid dynamics,
McGrawHill Book Company, Inc., New YorkTorontoLondon, 1953,
pp. 117–140. MR 0057637
(15,258b)
 [2]
Dieter
Gaier, Konstruktive Methoden der konformen Abbildung, Springer
Tracts in Natural Philosophy, Vol. 3, SpringerVerlag, Berlin, 1964
(German). MR
0199360 (33 #7507)
 [3]
Selected numerical methods for linear equations, polynomial equations,
partial differential equations, conformal mappings, Report on studies
sponsored by The Carlsberg Foundation, Regnecentralen, Copenhagen, 1962. MR 0149638
(26 #7123)
 [4]
J. HAYES, Four Computer Programs Using Green's Third Formula to Numerically Solve Laplace's Equation in Inhomogeneous Media, Los Alamos Scientific Laboratory Report, LA4423 (April 1970).
 [5]
John
K. Hayes, David
K. Kahaner, and Richard
G. Kellner, An improved method for numerical
conformal mapping, Math. Comp. 26 (1972), 327–334; suppl.,
ibid. 26 (1972), no. 118, loose microfiche suppl. A1–B14. MR 0301176
(46 #334), http://dx.doi.org/10.1090/S00255718197203011768
 [6]
John
Hayes and Richard
Kellner, The eigenvalue problem for a pair of coupled integral
equations arising in the numerical solution of Laplace’s
equation, SIAM J. Appl. Math. 22 (1972),
503–513. MR 0305634
(46 #4764)
 [7]
M.
A. Jaswon, Integral equation methods in potential theory. I,
Proc. Roy. Soc. Ser. A 275 (1963), 23–32. MR 0154075
(27 #4034)
 [8]
L. LICHTENSTEIN, "Zur konformen Abbildung einfach zusammenhängender schlichter Gebiete," Arch. Math. Phys., v. 25, 1917, pp. 179180.
 [9]
N.
I. Muskhelishvili, Singular integral equations,
WoltersNoordhoff Publishing, Groningen, 1972. Boundary problems of
functions theory and their applications to mathematical physics; Revised
translation from the Russian, edited by J. R. M. Radok; Reprinted. MR 0355494
(50 #7968)
 [10]
Ben
Noble, Some applications of the numerical solution of integral
equations to boundary value problems, Conference on Applications of
Numerical Analysis (Univ. Dundee, Dundee, 1971), Springer, Berlin, 1971,
pp. 137–154. Lecture Notes in Math., Vol. 228. MR 0353711
(50 #6194)
 [11]
S.
N. Karp and S.
E. Shamma, A generalization of separability in boundary value
problems, SIAM J. Appl. Math. 20 (1971),
536–546. MR 0289977
(44 #7162)
 [12]
George
T. Symm, An integral equation method in conformal mapping,
Numer. Math. 9 (1966), 250–258. MR 0207240
(34 #7056)
 [13]
S.
E. Warschawski, Recent results in numerical methods of conformal
mapping, Proceedings of Symposia in Applied Mathematics. Vol. VI.
Numerical analysis, McGrawHill Book Company, Inc., New York, for the
American Mathematical Society, Providence, R. I., 1956,
pp. 219–250. MR 0086403
(19,180a)
 [1]
 G. BIRKHOFF, D. M. YOUNG & E. H. ZARANTONELLO, Numerical Methods in Conformal Mapping, Proc. Sympos. Appl. Math., vol. IV, McGrawHill, New York, 1953, pp. 117140. MR 15, 258. MR 0057637 (15:258b)
 [2]
 D. GAIER, Konstruktive Methoden der konformen Abbildung, SpringerVerlag, Berlin, 1964. MR 33 #7507. MR 0199360 (33:7507)
 [3]
 C. GRAM (Editor), Selected Numerical Methods for Linear Equations, Polynomial Equations, Partial Differential Equations, Conformal Mappings, Regnecentralen, Copenhagen, 1962. MR 26 #7423. MR 0149638 (26:7123)
 [4]
 J. HAYES, Four Computer Programs Using Green's Third Formula to Numerically Solve Laplace's Equation in Inhomogeneous Media, Los Alamos Scientific Laboratory Report, LA4423 (April 1970).
 [5]
 J. K. HAYES, D. K. KAHANER & R. KELLNER, "An improved method for numerical conformal mapping," Math. Comp., v. 26, 1972, pp. 327334. MR 46 #334. MR 0301176 (46:334)
 [6]
 J. K. HAYES AND R. KELLNER, "The eigenvalue problem for a pair of coupled integral equations arising in the numerical solution of Laplace's equation," SIAM J. Appl. Math., v. 22, 1972, pp. 503513. MR 46 #4764. MR 0305634 (46:4764)
 [7]
 M. A. JASWON, "Integral equation methods in potential theory. I," Proc. Roy. Soc. Ser. A, v. 275, 1963, pp. 2332. MR 27 #4034. MR 0154075 (27:4034)
 [8]
 L. LICHTENSTEIN, "Zur konformen Abbildung einfach zusammenhängender schlichter Gebiete," Arch. Math. Phys., v. 25, 1917, pp. 179180.
 [9]
 N. I. MUSHELIŠVILI, Singular Integral Equations. Boundary Problems of Function Theory and Their Application to Mathematical Physics, Noordhoff, Groningen, 1953. MR 15, 434. MR 0355494 (50:7968)
 [10]
 B. NOBLE, Conference on Applications of Numerical Analysis, (J. Morris, Editor), SpringerVerlag, Berlin, 1971. MR 0353711 (50:6194)
 [11]
 S. SHAMMA, "A generalization of separability in boundary value problems," SIAM J. Appl. Math., v. 20, 1971, pp. 536546. MR 0289977 (44:7162)
 [12]
 G. T. SYMM, "An integral equation method in conformal mapping," Numer. Math., V. 9, 1966, pp. 250258. MR 34 #7056. MR 0207240 (34:7056)
 [13]
 S. E. WARSCHAWSKI, Recent Results in Numerical Methods of Conformal Mapping, Proc. Sympos. Appl. Math., vol. VI, Amer. Math. Soc., Providence, R. I., 1956, pp. 219250. MR 19, 180. MR 0086403 (19:180a)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65E05,
30A28
Retrieve articles in all journals
with MSC:
65E05,
30A28
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503710368
PII:
S 00255718(1975)03710368
Keywords:
Numerical conformal mapping,
numerical solution of integral equations of the first kind
Article copyright:
© Copyright 1975
American Mathematical Society
