Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)


A numerical comparison of integral equations of the first and second kind for conformal mapping

Authors: John K. Hayes, David K. Kahaner and Richard G. Kellner
Journal: Math. Comp. 29 (1975), 512-521
MSC: Primary 65E05; Secondary 30A28
MathSciNet review: 0371036
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two methods for computing numerical conformal mappings are compared. The first, due to Symm, uses a Fredholm integral equation of the first kind while the other, due to Lichtenstein, uses a Fredholm integral equation of the second kind. The two methods are tested on ellipses with different ratios of major to minor axes. The method based on the integral equation of the second kind is superior if the ratio is less than or equal to 2.5. The opposite is true if the ratio is greater than or equal to 10. Similar results are obtained for other regions.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65E05, 30A28

Retrieve articles in all journals with MSC: 65E05, 30A28

Additional Information

PII: S 0025-5718(1975)0371036-8
Keywords: Numerical conformal mapping, numerical solution of integral equations of the first kind
Article copyright: © Copyright 1975 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia