Explicit-implicit schemes for the numerical solution of nonlinear hyperbolic systems

Authors:
G. R. McGuire and J. Ll. Morris

Journal:
Math. Comp. **29** (1975), 407-424

MSC:
Primary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1975-0371085-X

MathSciNet review:
0371085

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A class of methods, comprising combinations of explicit and implicit methods, for solving systems of conservation laws in one space dimension is developed. The explicit methods of McGuire and Morris [5] are combined with the implicit methods of McGuire and Morris [11] in a manner similar to that for creating *Hopscotch* methods (Gourlay [13]). The stability properties of these *explicit-implicit* methods is investigated and the results of some numerical experiments are presented. Extensions of these methods to systems of conservation laws in two space dimensions are also briefly discussed.

**[1]**A. Jeffrey and T. Taniuti,*Non-linear wave propagation. With applications to physics and magnetohydrodynamics*, Academic Press, New York-London, 1964. MR**0167137****[2]**O. A. Oleĭnik,*On discontinuous solutions of non-linear differential equations*, Dokl. Akad. Nauk SSSR (N.S.)**109**(1956), 1098–1101 (Russian). MR**0083088****[3]**R. D. RICHTMYER,*A Survey of Difference Methods for Non-Steady Fluid Dynamics*, NCAR Technical Notes 63-2, 1962.**[4]**A. R. Gourlay and J. Ll. Morris,*Finite difference methods for nonlinear hyperbolic systems*, Math. Comp.**22**(1968), 28–39. MR**0223114**, https://doi.org/10.1090/S0025-5718-1968-0223114-8**[5]**G. R. McGuire and J. Ll. Morris,*A class of second-order accurate methods for the solution of systems of conservation laws*, J. Computational Phys.**11**(1973), 531–549. MR**0331808****[6]**Peter Lax and Burton Wendroff,*Systems of conservation laws*, Comm. Pure Appl. Math.**13**(1960), 217–237. MR**0120774**, https://doi.org/10.1002/cpa.3160130205**[7]**Peter D. Lax,*Weak solutions of nonlinear hyperbolic equations and their numerical computation*, Comm. Pure Appl. Math.**7**(1954), 159–193. MR**0066040**, https://doi.org/10.1002/cpa.3160070112**[8]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[9]**R. Courant, K. Friedrichs, and H. Lewy,*On the partial difference equations of mathematical physics*, IBM J. Res. Develop.**11**(1967), 215–234. MR**0213764**, https://doi.org/10.1147/rd.112.0215**[10]**John Gary,*On certain finite difference schemes for hyperbolic systems*, Math. Comp.**18**(1964), 1–18. MR**0158553**, https://doi.org/10.1090/S0025-5718-1964-0158553-3**[11]**G. R. McGuire and J. Ll. Morris,*A class of implicit, second-order accurate, dissipative schemes for solving systems of conservation laws*, J. Computational Phys.**14**(1974), 126–147. MR**0343641****[12]**S. Abarbanel and G. Zwas,*An iterative finite-difference method for hyperbolic systems*, Math. Comp.**23**(1969), 549–565. MR**0247783**, https://doi.org/10.1090/S0025-5718-1969-0247783-2**[13]**A. R. Gourlay,*Hopscotch: A fast second-order partial differential equation solver.*, J. Inst. Math. appl.**6**(1970), 375–390. MR**0278537****[14]**A. R. Gourlay and G. R. McGuire,*General hopscotch algorithm for the numerical solution of partial differential equations*, J. Inst. Math. Appl.**7**(1971), 216–227. MR**0287726****[15]**Paul Gordon,*Nonsymmetric difference equations*, J. Soc. Indust. Appl. Math.**13**(1965), 667–673. MR**0185830****[16]**S. M. SCALA & P. GORDON, "Solution of the time-dependent Navier-Stokes equations for the flow around a circular cylinder,"*AIAA J.*, v. 6, 1968, pp. 815-822.**[17]**A. R. Gourlay and J. Ll. Morris,*Hopscotch difference methods for nonlinear hyperbolic systems*, IBM J. Res. Develop.**16**(1972), 349–353. Mathematics of numerical computation. MR**0347100**, https://doi.org/10.1147/rd.164.0349**[18]**A. R. GOURLAY, G. R. MCGUIRE & J. Ll. MORRIS,*One Dimensional Methods for the Numerical Solution of Nonlinear Hyperbolic Equations*, IBM UK Rep. #12, 1972.**[19]**John J. H. Miller,*On the location of zeros of certain classes of polynomials with applications to numerical analysis*, J. Inst. Math. Appl.**8**(1971), 397–406. MR**0300435****[20]**G. R. MCGUIRE,*Hopscotch Methods for the Solution of Linear Second Order Parabolic Partial Differential Equations*, M. Sc. Thesis, University of Dundee, 1970.**[21]**Gilbert Strang,*Accurate partial difference methods. II. Non-linear problems*, Numer. Math.**6**(1964), 37–46. MR**0166942**, https://doi.org/10.1007/BF01386051**[22]**Gilbert Strang,*On the construction and comparison of difference schemes*, SIAM J. Numer. Anal.**5**(1968), 506–517. MR**0235754**, https://doi.org/10.1137/0705041**[23]**G. R. MCGUIRE & J. Ll. MORRIS, "Restoring orders of accuracy for multilevel schemes for nonlinear hyperbolic systems in many space variables." (To appear.)**[24]**E. L. RUBIN & S. Z. BURSTEIN, "Difference methods for the inviscid and viscous equations of a compressible gas,"*J. Computational Phys.*, v. 2, 1967, pp. 178-196.**[25]**Patrick J. Roache,*Computational fluid dynamics*, Hermosa Publishers, Albuquerque, N.M., 1976. With an appendix (“On artificial viscosity”) reprinted from J. Computational Phys. 10 (1972), no. 2, 169–184; Revised printing. MR**0411358**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10

Retrieve articles in all journals with MSC: 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0371085-X

Article copyright:
© Copyright 1975
American Mathematical Society