Explicit-implicit schemes for the numerical solution of nonlinear hyperbolic systems

Authors:
G. R. McGuire and J. Ll. Morris

Journal:
Math. Comp. **29** (1975), 407-424

MSC:
Primary 65M10

DOI:
https://doi.org/10.1090/S0025-5718-1975-0371085-X

MathSciNet review:
0371085

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A class of methods, comprising combinations of explicit and implicit methods, for solving systems of conservation laws in one space dimension is developed. The explicit methods of McGuire and Morris [5] are combined with the implicit methods of McGuire and Morris [11] in a manner similar to that for creating *Hopscotch* methods (Gourlay [13]). The stability properties of these *explicit-implicit* methods is investigated and the results of some numerical experiments are presented. Extensions of these methods to systems of conservation laws in two space dimensions are also briefly discussed.

**[1]**A. JEFFREY & T. TANUITI,*Non-Linear Wave Propagation with Applications to Physics and Magnetohydrodynamics*, Academic Press, New York and London, 1964. MR**29**#4410. MR**0167137 (29:4410)****[2]**O. A. OLEĬNIK, "On discontinuous solutions of non-linear differential equations,"*Dokl. Akad. Nauk SSSR*, v. 109, 1956, pp. 1098-1101. (Russian) MR**18**, 656. MR**0083088 (18:656c)****[3]**R. D. RICHTMYER,*A Survey of Difference Methods for Non-Steady Fluid Dynamics*, NCAR Technical Notes 63-2, 1962.**[4]**A. R. GOURLAY & J. Ll. MORRIS, "Finite-difference methods for nonlinear hyperbolic systems,"*Math. Comp.*, v. 22, 1968, pp. 28-39. MR**36**#6163. MR**0223114 (36:6163)****[5]**G. R. MCGUIRE & J. Ll. MORRIS, " A class of second order accurate methos for the solution of systems of conservation laws,"*J. Computational Phys.*, v. 11, 1973, pp. 531-549. MR**0331808 (48:10140)****[6]**P. D. LAX & B. WENDROFF, "Systems of conservation laws,"*Comm. Pure Appl. Math.*, v. 13, 1960, pp. 217-237. MR**22**#11523. MR**0120774 (22:11523)****[7]**P. D. LAX, "Weak solutions on nonlinear hyperbolic equations and their numerical computation,"*Comm. Pure Appl. Math.*, v. 7, 1954, pp. 159-193. MR**16**, 524. MR**0066040 (16:524g)****[8]**R. D. RICHTMYER & K. W. MORTON,*Difference Methods for Initial-Value Problems*, 2nd ed., Interscience Tracts in Pure and Appl. Math., no. 4, Interscience-Wiley, New York, 1967. MR**36**#3515. MR**0220455 (36:3515)****[9]**R. COURANT, K. O. FRIEDRICHS & M. LEWY, "On the partial difference equations of mathematical physics'"*IBM J. Res. Develop.*, v. 11, 1967, pp. 215-234. MR**35**#4621. MR**0213764 (35:4621)****[10]**J. GARY, "On certain finite difference schemes for hyperbolic systems,"*Math. Comp.*, v. 18, 1964, pp. 1-18. MR**28**#1776. MR**0158553 (28:1776)****[11]**G. R. MCGUIRE & J. Ll. MORRIS, "A class of implicit, second order accurate dissipative schemes for solving systems of conservation laws,"*J. Computational Phys.*, v. 14, 1974, pp. 126-147. MR**0343641 (49:8381)****[12]**S. ABARBANEL & G. ZWAS, "An iterative finite-difference method for hyperbolic systems,"*Math. Comp.*, v. 23, 1969, pp. 549-565. MR**40**#1044. MR**0247783 (40:1044)****[13]**A. R. GOURLAY, "Hopscotch: A fast second-order partial differential equation solver,"*J. Inst. Math. Appl.*, v. 6, 1970, pp. 375-390. MR**43**#4267. MR**0278537 (43:4267)****[14]**A. R. GOURLAY & G. R. MCGUIRE, "General hopscotch algorithm for the numerical solution of partial differential equations,"*J. Inst. Math. Appl.*, v. 7, 1971, pp. 216-227. MR**44**#4929. MR**0287726 (44:4929)****[15]**PAUL GORDON, "Nonsymmetric difference equations,"*J. Soc. Indust. Appl. Math.*, v. 13, 1965, pp. 667-673. MR**32**#3290. MR**0185830 (32:3290)****[16]**S. M. SCALA & P. GORDON, "Solution of the time-dependent Navier-Stokes equations for the flow around a circular cylinder,"*AIAA J.*, v. 6, 1968, pp. 815-822.**[17]**A. R. GOURLAY & J. Ll. MORRIS, "Hopscotch difference methods for nonlinear hyperbolic systems,"*IBM J. Res. Develop.*, v. 16, 1972, pp. 349-353. MR**0347100 (49:11820)****[18]**A. R. GOURLAY, G. R. MCGUIRE & J. Ll. MORRIS,*One Dimensional Methods for the Numerical Solution of Nonlinear Hyperbolic Equations*, IBM UK Rep. #12, 1972.**[19]**JOHN J. H. MILLER, "On the location of zeros of certain classes of polynomials with applications to numerical analysis,"*J. Inst. Math. Appl.*, v. 8, 1971, pp. 397-406. MR**45**#9481. MR**0300435 (45:9481)****[20]**G. R. MCGUIRE,*Hopscotch Methods for the Solution of Linear Second Order Parabolic Partial Differential Equations*, M. Sc. Thesis, University of Dundee, 1970.**[21]**GILBERT STRANG, "Accurate partial difference methods. II. Non-linear problems,"*Numer. Math.*, v. 6, 1964, pp. 37-46. MR**29**#4215. MR**0166942 (29:4215)****[22]**GILBERT STRANG, "On the construction and comparison of difference schemes,"*SIAM J. Numer. Anal.*, v. 5, 1968, pp. 506-517. MR**38**#4057. MR**0235754 (38:4057)****[23]**G. R. MCGUIRE & J. Ll. MORRIS, "Restoring orders of accuracy for multilevel schemes for nonlinear hyperbolic systems in many space variables." (To appear.)**[24]**E. L. RUBIN & S. Z. BURSTEIN, "Difference methods for the inviscid and viscous equations of a compressible gas,"*J. Computational Phys.*, v. 2, 1967, pp. 178-196.**[25]**P. J. ROACHE,*Computational Fluid Dynamics*, Hermosa, Albuquerque, N. M., 1972. MR**0411358 (53:15094)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M10

Retrieve articles in all journals with MSC: 65M10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0371085-X

Article copyright:
© Copyright 1975
American Mathematical Society