Some properties of orthogonal polynomials

Author:
D. B. Hunter

Journal:
Math. Comp. **29** (1975), 559-565

MSC:
Primary 42A52

DOI:
https://doi.org/10.1090/S0025-5718-1975-0374792-8

MathSciNet review:
0374792

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some results are obtained concerning the signs of the coefficients in the expansions in powers of or of and , where is the polynomial of degree *n* in the orthogonal sequence associated with a given weight-function over and .

**[1]**W. BARRETT, "Convergence properties of Gaussian quadrature formulae,"*Comput. J.*, v. 3, 1960/61, pp. 272-277. MR**23**# B1117. MR**0128073 (23:B1117)****[2]**J. D. DONALDSON & D. ELLIOTT," A unified approach to quadrature rules with asymptotic estimates of their remainders,"*SIAM J. Numer. Anal.*, v. 9, 1972, pp. 573-602. MR**47**#6069. MR**0317522 (47:6069)****[3]**F. B. HILDEBRAND,*Introduction to Numerical Analysis*, McGraw-Hill, New York, 1956. MR**17**, 788. MR**0075670 (17:788d)****[4]**D. E. LITTLEWOOD,*A University Algebra*, 2nd ed., Heinemann, London, 1958. MR**13**, 523. MR**0045079 (13:523b)****[5]**F. STENGER, "Bounds on the error of Gauss-type quadratures,"*Numer. Math.*, v. 8, 1966, pp. 150-160. MR**33**#5120. MR**0196936 (33:5120)****[6]**G. SZEGÖ, "Über gewisse Potenzreihen mit lauter positiven Koeffizienten,"*Math. Z.*, v. 37, 1933, pp. 674-688. MR**1545428****[7]**G. SZEGÖ,*Orthogonal Polynomials*, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1967.

Retrieve articles in *Mathematics of Computation*
with MSC:
42A52

Retrieve articles in all journals with MSC: 42A52

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0374792-8

Keywords:
Orthogonal polynomials,
weight-function,
power-series,
Jacobi polynomials,
Gaussian quadrature

Article copyright:
© Copyright 1975
American Mathematical Society