Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Some properties of orthogonal polynomials


Author: D. B. Hunter
Journal: Math. Comp. 29 (1975), 559-565
MSC: Primary 42A52
DOI: https://doi.org/10.1090/S0025-5718-1975-0374792-8
MathSciNet review: 0374792
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Some results are obtained concerning the signs of the coefficients in the expansions in powers of $ {x^{ - 1}},{(1 + x)^{ - 1}}$ or $ {(1 - x)^{ - 1}}$ of $ 1/{p_n}(x)$ and $ {q_n}(x)$, where $ {p_n}(x)$ is the polynomial of degree n in the orthogonal sequence associated with a given weight-function $ w(x)$ over $ ( - 1,1)$ and $ {q_n}(x) = \smallint _{ - 1}^1w(t){p_n}(t){(x - t)^{ - 1}}dt$.


References [Enhancements On Off] (What's this?)

  • [1] W. BARRETT, "Convergence properties of Gaussian quadrature formulae," Comput. J., v. 3, 1960/61, pp. 272-277. MR 23 # B1117. MR 0128073 (23:B1117)
  • [2] J. D. DONALDSON & D. ELLIOTT," A unified approach to quadrature rules with asymptotic estimates of their remainders," SIAM J. Numer. Anal., v. 9, 1972, pp. 573-602. MR 47 #6069. MR 0317522 (47:6069)
  • [3] F. B. HILDEBRAND, Introduction to Numerical Analysis, McGraw-Hill, New York, 1956. MR 17, 788. MR 0075670 (17:788d)
  • [4] D. E. LITTLEWOOD, A University Algebra, 2nd ed., Heinemann, London, 1958. MR 13, 523. MR 0045079 (13:523b)
  • [5] F. STENGER, "Bounds on the error of Gauss-type quadratures," Numer. Math., v. 8, 1966, pp. 150-160. MR 33 #5120. MR 0196936 (33:5120)
  • [6] G. SZEGÖ, "Über gewisse Potenzreihen mit lauter positiven Koeffizienten," Math. Z., v. 37, 1933, pp. 674-688. MR 1545428
  • [7] G. SZEGÖ, Orthogonal Polynomials, 3rd ed., Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 1967.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 42A52

Retrieve articles in all journals with MSC: 42A52


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0374792-8
Keywords: Orthogonal polynomials, weight-function, power-series, Jacobi polynomials, Gaussian quadrature
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society