Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Gershgorin theory for the generalized eigenvalue problem $ Ax=\lambda Bx$


Author: G. W. Stewart
Journal: Math. Comp. 29 (1975), 600-606
MSC: Primary 15A42; Secondary 65F15
MathSciNet review: 0379537
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalization of Gershgorin's theorem is developed for the eigenvalue problem $ Ax = \lambda Bx$ and is applied to obtain perturbation bounds for multiple eigenvalues. The results are interpreted in terms of the chordal metric on the Riemann sphere, which is especially convenient for treating infinite eigenvalues.


References [Enhancements On Off] (What's this?)

  • [1] C. CARATHÈODORY, Theory of Functions of a Complex Variable. Vol. I, Translated by F. Steinhardt, Chelsea, New York, 1954. MR 15, 612.
  • [2] Alston S. Householder, The theory of matrices in numerical analysis, Blaisdell Publishing Co. Ginn and Co. New York-Toronto-London, 1964. MR 0175290
  • [3] G. W. Stewart, Error and perturbation bounds for subspaces associated with certain eigenvalue problems, SIAM Rev. 15 (1973), 727–764. MR 0348988
  • [4] J. H. Wilkinson, The algebraic eigenvalue problem, Clarendon Press, Oxford, 1965. MR 0184422

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 15A42, 65F15

Retrieve articles in all journals with MSC: 15A42, 65F15


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1975-0379537-3
Keywords: Eigenvalue, generalized eigenvalue problem, Gershgorin theorem, condition numbers, inclusion regions, perturbation theory
Article copyright: © Copyright 1975 American Mathematical Society