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New Primality Criteria and Factorizations of 2™ d= 1

By John Brillhart, D. H. Lehmer and J. L. Selfridge

Abstract.    A collection of theorems is developed for testing a given integer N for

primality.    The first type of theorem considered is based on the converse of Fer-

mât 's theorem and uses factors of N —  1.    The second type is based on divisibility

properties of Lucas sequences and uses factors of N +  1.    The third type uses fac-

tors of both N — 1 and N +  1 and provides a more effective, yet more complica-

ted, primality test.    The search bound for factors of N ±  1 and properties of the

1 2
hyperbola N = x    — y      are utilized in the theory for the first time.

A collection of 133 new complete factorizations of 2m ± 1 and associated

numbers is included, along with two status lists: one for the complete factoriza-

tions of 2m ±  1 ; the other for the original Mersenne numbers.

1.  Introduction.  The theory of testing a given odd integer TV for primality by

some converse of Fermat's theorem, or by its generalization in Lucas sequences, was

begun in 1876 by Lucas ([9], [10, p. 302]).

Since that time, this theory has gradually been developed by various writers

(Proth [15], Lucas [11], Pocklington [14], Lehmer [6], [7], [8], Robinson [18],

Brillhart and Selfridge [4], Williams and Zarnke [21], Riesel [17] ) in the direction of

reducing the amount of calculation needed to complete a primality test on N.

In Sections 2 through 7 of the present paper, this purpose is carried considerably

further.  The contents of these sections are the following:

Section 2 contains two theorems in which A^ — 1 is completely factored.  Theo-

rem 1 was given earlier in [4].  Theorem 2, which is somewhat unfamiliar, is an im-

provement on Theorem 1 (see Kraitchik [5] ).  In the latter theorem, the condition

a(N-i )/2 = _ j (moci /v) is used (see [18]) rather than the usual test that TV is a "pseudo-

prime base a."

Section 3 contains five theorems and three corollaries which use only partial factor-

izations of TV- 1. Theorem 3 is a strengthening of a theorem of Proth [15]. Theorem 4

and Corollary 1 are familiar. Theorem 5 is new and is an advance over the old theory in

that the factored portion of TV - 1 need only be about TV1 ̂ before the primality test can

be completed. Corollary 3 brings the direct search bound for factors of TV - 1 into the

theory for the first time. Theorem 7 uses thn bound to construct an improved version of

Theorem 5. Ordinarily, representing N numerically as a difference of squares is used for
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the purpose of factoring a composite TV.  However, this representation is used in

a new way to establish the primality test in Theorem 7.  It also appears indirectly

in the proofs of Theorems 5,17, and 19.

Section 4 contains a resume of properties of Lucas sequences that are needed

for the theoretical developments in Sections 5-7.

Sections 5 and 6 exactly parallel Sections 2 and 3 in that they contain com-

parable theorems in which factors of TV + 1 are used instead of those of TV — 1.

That such a parallel development is possible rests on Theorem 16, which is due to

Michael Morrison [12].  The discovery of this theorem came as a surprise, since,

previously, it had been thought that the theory using the factors of TV + 1 was

considerably more complicated.

Section 7 contains two theorems and a corollary which utilize factorizations

of both TV — 1 and TV + 1.  A considerable advantage is gained thereby since the

amount of factorization needed to test TV for primality is substantially reduced.

Theorem 21 is unusual in that it does not deal directly with the prime factors of

TV ± 1, but rather with the primes dividing algebraic factors of these numbers.

The final section of the paper contains a discussion of numerical results, a

listing of which is given in three tables.  In particular, 133 complete factorizations

of 2m ± 1 and associated numbers are given, along with a status table showing

which numbers of these forms have been completely factored.  A current status

table for the Mersenne numbers IP — 1, p < 257, is also included.

It should be noted that many of the theorems in this paper are stated in

more detail and generality than may be needed for some applications.  In such

applications, some of the variables can be set to their minimum values, and minor

terms can often be dropped. The generality in the theorems may be of use in

certain cases and has been given to delimit more carefully the theoretical results.

2.  Theorems Requiring a Complete Factorization of TV — 1. As it sometimes

happens, a complete factorization of TV — 1 can be found without difficulty.  For

example, if TV has a special form such as TV = 3 • 2m + 1, or if by chance TV — 1

possesses only small prime factors which can be discovered almost immediately by

direct search, the complete factorization is at hand.   In these cases, because of

the uncomplicated nature of the theorems in this section, as well as Theorem 3

in the next section, a simple program can be written to carry out the primality

testing which does not require much memory space.  Such a program, however,

requires more running time than one based on later sections, but may be more

suitable for use in small computers where memory space is limited (see Selfridge

and Guy [20]).

By way of notation, the symbol TV will denote an odd integer > 1, and p,

q, and n (as well as p¡, q¡, and n¡) will denote primes throughout the rest of this

paper.  The expression "TV is a psp base a" will be used for a number TV which
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satisfies the congruence aN~l = 1   (mod TV), 1 <a < TV - 1, i.e., TV is a "pseudoprime"

base a. (Since a is chosen in advance, it is extremely rare that TV is composite when it

is found to be a psp base a.)

Theorem 1. Let TV — 1 = n p¡ '.  If for each p¡ there exists an a¡ such that TV is

a psp base a¡,but a¡ p'^ 1   (mod TV), then TV is prime.

Proof.   Let e¡ be the order of a¡  (mod TV).  Since e¡ | TV - 1, but e( '('(TV - l)lp¡,

then pi '\e¡.  But for each i, e¡ | 4>(N), so that p¡ '\ 0(TV), which implies TV - 1 |0(TV).

Hence, TV is prime.  Q.E.D.

Remarks. 1.  Theorem 1 indicates that if for any p¡ a base a¡ can be found for

which both hypotheses are satisfied, then that p¡ is settled once and for all.  (See [4, p.

89].)  This is in contrast to the somewhat less satisfactory situation in earlier theorems

(see Lehmer [6] and Lucas [11]) where a single base a is used for which the hy-

potheses must be satisfied for all p¡.

2. The computations for each p¡ can be done efficiently by calculating

(1) a^-\)lPi _b^ l    (mod N^   and then  bP, _ j    (mod Ny

3. In practice a good strategy for choosing the a¡ is the following:

(i)  Find «j by the quadratic reciprocity law so that (a,/TV) = — 1.

(ii)  Use a1 for successive p¡ as long as (1) is satisfied.  (For each p¡ for which the

base is not changed, it is of course not necessary to compute the second part of (1).)

(in) Whenever (1) is not satisfied, change the base according to (i), returning to

a previous base, if possible, to avoid having to recompute the second part of (1).

The next theorem is an improvement over Theorem 1 in that slightly less calcula-

tion is required to complete the primality test.

Theorem 2. Let TV - 1 = n pt '. If for each p¡ there exists an a¡ such that

(2) «f-')'2H- 1   (mod TV),

but (for p, > 2),

(3) a¡N-l)l2p'*-l    (mod TV),

then TV is prime.

Proof.   Congruence (2) implies TV is a psp for each base a¡.  For each p¡ > 2, if

a(N-l )/2P/ s b¡   (mod Nl then a(N- 1 ),pt sb2pi    (mod N). for> if b2 m !

(mod TV) for some /, then, since pf is odd, —1 = a\N~l^l2 = b¡ ' = b¡  (mod TV), which

contradicts (3).  Hence, TV is prime by Theorem 1.   Q.E.D.

3.  Theorems in Which TV - 1 is Partially Factored. In the special case where a

prime factor of TV — 1 exceeds s/Ñ/2 - 1, the next theorem, which is a strengthening

of a theorem of Proth [15], provides a primality test involving less computing than

Theorem 2.

Theorem 3. Let TV - 1 = mp, where p is an odd prime such that 2p + 1 > \/TV.
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// there exists an a for which a(N~' )/2 = - 1   (mod TV), but aml2 £ -1 (mod TV),

then TV is prime.

Proof. Let e be the order of a (mod TV). Then e | TV - 1. But, using the same

argument as in the proof of Theorem 2, am £ 1 (mod TV), so e \ (TV - l)/p. Hence,

p | e, and since e | 0(TV), then p | </>(TV).  Also,

0(TV)|/Vn(/z¿ - 1) = (mp + l)n(H(. - 1),

so p | n(«(. - 1), or p | n, - 1 for some i, say /' = 1.  Thus, «, = 1   (mod 2p).  But

TV = 1   (mod 2p), which implies TV/«X = 1   (mod 2p).   On the other hand, since «, >

2p + 1 > \/TV, then 1 < TV/Wj < VtV" < 2p + 1.  Therefore, the only possibility for

TV/Hj is 1, so TV is prime.  Q.E.D.

Remark.   This theorem reduces the amount of testing because the prime factors

of m can be ignored.  Also, note that p need not be the largest prime divisor of TV - 1,

as TV = 31 and p = 3 shows.

Throughout the rest of this paper the notation TV — 1 = F1Rl will be used,

where F1 is the even factored portion of TV - 1, R x is > 1, and (Fl, R x ) = 1.

Theorem 4 (Pocklington [14]). If for each prime p¡ dividing Ft there exists

an a¡ such that TV is a psp base a¡ and (a¡ ' — 1, TV) = 1, then each prime divisor

of N is = 1   (mod F¡).

Proof. Let « be a prime divisor of TV, and e{ be the order of a¡ (mod n). Then

«,111-1. Also, of'1 = 1 (mod n), so e¡ |TV - 1. On the other hand, (a?~l)IPi -

1, n) = 1, so e¡ -f (TV — \)¡p¡, which implies p¡ ' \e¡, where p¡ ' Il Fx. Hence, for each

i, p"''|« - 1, so that F, |n - 1.  Q.E.D.

Remark (R. DeVogelaere). In verifying the hypotheses of this theorem, only

one GCD computation is necessary:   First find an a¡ such that a¡ ' — 1 = b¡ £ 0

(mod TV) for each /; then calculate the product II b¡ = c  (mod TV); and finally, if c ^

0, compute d = (c, TV).

If d i= 1, then TV is composite and a factor has been found. Also, if c = 0, then

some b¡ has a prime factor in common with TV.

For convenience of reference put:

(I) . For each prime p¡ dividing Fl there exists an a¡ such that TV is a psp base a¡

and{af-ï)lp'-\,N)=\.

Corollary 1.   Assume (I).  If Fx > \/N, then TV is prime.

Remark.   Corollary 1 is an improvement over Theorem 2 in that the primality

test can be completed as soon as the factored part of TV - 1 exceeds the unfactored

part.  This saving in time is offset only to a slight degree by the amount of computing

needed to calculate the required GCD's.  It will be the main goal of the rest of this

paper to continue to reduce the amount of auxiliary factorization, as in this case,

through the introduction of various conditions which require a small amount of com-

puting time as compared to the factoring time eliminated.  In this regard, the next

theorem is a considerable improvement on Corollary 1, since TV — 1 need only be fac-

tored to the point where FI > (TV/2)1 /3 rather than Fx > s/Ñ.   A further reduction is
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possible if m is chosen to be > 1.  The cost of this reduction is at most the time needed

to calculate (r2 — 8s)Vl and the trial division of XFj + 1 into TV for m — 1 values of X.

Theorem 5. Assume (I) and let m be > 1.   When m > 1, assume further that

\Fl + 1 \ Nfor 1< \<m.  If

(4) TV< (mFx + 1) [2F2 + (r - m)F1 + 1],

where r and s are defined by R¡ = (TV - 1)/Fj = 2Fls + r, 1 < r < 2Fv then TV is

prime if and only if s = 0 or r2 - 8s ¥= D.  (r^O since R1 is odd.)

Proof.   The theorem will be proved in the equivalent form:  TV is composite if and

only if s =¿0andr2 - 8s = D.

(i) (=>).    From Theorem 4 it follows that all factors of TV are 1   (mod F{).

Thus, since TV is composite,

(5) TV = (cFt + \)(dFl + 1),      c,d>m.

Also, Ft is odd and Fl is even, so the equation

(6) Rl={N-\)¡Fl=cdFl+c + d

implies that c + d is odd, so cd is even.  Hence, from

(7) cdF1 +c +d = Rl =2FjS+r

it follows that

(8) c + d=r    (mod 2Fj),

where c + d - r > 0, since r is the least positive remainder  (mod 2F1 ).  On the other

hand, (c - m) (d - m) > 0 implies cd > m(c + d) - m2, so that

(mFl + 1) [2F2 + (r - m)F1 + 1] >N = cdF2 + (c + d)Fl + 1

> [m(c + d)- m2] F2 + (c + d)Fl + 1

= (mFi + l){[(c + d)-m]Fl + 1}.

Thus, 2F2 + (r - m)Fl + 1 > [(c + d) - m] F, + 1, or c + d - r < 2FX.  Com-

bining this result with (8) gives c + d = r.  Thus, from (7) it follows that 2s = cd ¥= 0.

Finally, r2 - 8s = (c + d)2 - 4cd = (c - d)2.

(ii)  (<=).   With s + 0 and, say, r2 - 8s = t2, then

N = FiR1 + 1 = F!(2F,s + r) + 1 = [(r2 - r2)F2/4] + rFx + 1

where the factors on the right are > 1, since s =£ 0.   Q.E.D.

Remarks.   1. In the factorization in (ii), if m > 1, the two factors are prime; for

if TV = (cFj + l)(dFj + l)(eFj + 1), where c, d, e > m > 2, then (4) is contradicted.
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To see this, it is sufficient to consider the smallest values of the coefficients, i.e.,

when c = d = e = m.   Then

TV = (mFj + l)3 = (wFj + l)[m2F2 + 2/nF, + I] > (mF1 + 1)[4F,2 + 2mFl + 1]

> (mFl + l)[2F2 + (r + 2m)Fl + 1] > (mF1 + 1)[2F2 + (r - m)Fl + 1].

This argument does not hold when  m = 1.

2. Note that the right side of (4) is composite, so the inequality is sharp.  (Cf.

[18, Theorem 10], where F1 = 2n.)

3. The choice of m in the hypothesis is arbitrary. It would usually be chosen

large enough to ensure that (4) is satisfied. Increasing the size of m for this purpose, of

course, must be weighed against further factoring of TV — 1 to try to increase the size of

Fj. Differentiating the right side, f(m), of (4) with respect to the real variable m (with

Fj and r constant) gives the critical value m = Fl + r/2. Thus, 1 < m < Fl +r/2 and

the largest TV that can be tested by Theorem 5 is less than the integer f(Fx + r/2) =

(F2 +rFj2+ l)2.

4. The coefficient 2 in (4) arises because 2 divides cd in (6).  In general, if it can

be shown that some odd integer g also divides cd, then the coefficient 2 in (4) can be re-

placed by 2g.  The 2 in the definition of r and s must also be replaced by 2g.  For

example, if TV = - 1   (mod 3), then in (5) one of the factors, say cFx + 1, must be

= 1   (mod 3).  Thus, 3 | cFx, and since 3 \FX, 31 c, i.e., 31 cd.

Also, if TV = — 1   (mod 5), and it is known that 5 is a quadratic residue of TV,

then since 5 -f" FX, 5 \cd.   If TV = - 1   (mod 8), and 2 is a quadratic residue of TV, then

81 cdFx.   But since N - 1 = - 2  (mod 8), 2IIFx, which implies 4 \cd (instead of 2

dividing cd).  Similarly, if TV = 3  (mod 8), and - 2 is a quadratic residue of TV, then

8|cdF,,2llF,,and 4|cd.

It should be observed that the above conditions, when they hold, can be com-

bined to give a larger leading coefficient in (4).  (These observations are due to Michael

Morrison.)

Theorem 6. Let n be a prime divisor of TV.  If N is a psp base a, and

(9) (/»- \,N)=\,

then n = 1   (mod p), where p is some prime divisor of Rx depending on n.

Proof Let e be the order of a (mod n). Then e\n — 1. Also, since TV is a psp

base a, it follows that e|TV- 1 = FjFj. But from (9), aFl f- 1 (mod «), so e \ F,.

Hence, (e, Rx) > 1, i.e., there exists a prime p such that p\e and p|F,. Thus, p\n —

1.  Q.E.D.

For convenience of reference put:

(II)   For some a, N is a psp base a and (a i  — 1, TV) = 1.

Remark.   The exponent in (II) has the same form as the exponent in (I), so in a

program, (I) and (II) can be treated as a single test by considering Rx as the final

"prime" factor of TV - 1.
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Corollary 2. Assume (I) and (II), and let n be a prime divisor of N.   Then n =

1   (mod pFx), where p is some prime divisor of Rx depending on n.

Proof.   Since (Fx, Rx) = 1, the corollary follows from Theorems 4 and 6.  Q.E.D.

Corollary 3.  Assume (I) and (II).  If all the prime factors of Rx are > Bx

and BXFX > \/W, then TV is prime.

Proof.   From Corollary 2, n — 1 > pFx > BXFX > %/TV, which implies TV is prime.

Q.E.D.
Remark.   The new feature on Corollary 3 is that Bx appears in the inequality for

TV.  The number Bx is quite different from Fx, since Fx contains the "discovered"

factors of TV — 1, while Bx gives the information (not immediately verifiable) that the

prime factors of Rx are greater than or equal to Bx.  (This latter assumes that no factor

of TV — 1 has been overlooked, as it might be if the computer were not working

properly.)

The next theorem, which improves on Corollary 3, uses formulas relating to the

hyperbola x2 — y2 = TV, in a way similar to what was done implicitly in the proof of

Theorem 5.

Lemma 1. If either 0<a<b < \/TV or y/Ñ < Z> < a, then b + TV/Z? < a +

TV/a.

Proof.   The conclusion follows from (a-1 - ¿>_1)(TV - ab) > 0. Q.E.D

Theorem 7. Assume (I) and (II), and also that the prime factors of Rx are > Bx.

If

(10) TV < (BXFX + 1) [2F2 + (r - BX)FX + 1],

where  r and s are defined by Rx = 2Fxs + r,  1 < r < 2FX, then TV is prime if and

only ifs = 0orr2-8s^D.

Proof.   The theorem will be proved in the equivalent form:  TV is composite if

and only if s + 0 and r2 - 8s = D.

(i)   (=>).    From Theorem 4 all the factors of TV are 1   (mod Fx ).  Since TV is

composite, it can be written asTV = nw = x2 -y2 = (x -y)(x +y) = (cFx + l)(dFx + 1),

c, d > 1, where n is the smallest prime factor of TV and w > 1. Then TV = cdF2 + (c + d)Fx

+ 1 and 2x = (c + d)Fx +2. But R, = cdF\ + c + d, and since R x is odd and F, is

even, then c + d is odd, so that cd is even, say cd = 2g. Then TV = 2gF\ + 2x - 1,

so 2x = F1Ä1 + 2 - 2gF\ = Fx(2Fxs + r) + 2 - 2gF\ = (s - g)2F\ + rFx + 2.

Let X = s - g.   Then from rFx + 2 < Ft(2F, - 1) + 2 < 2F2 it follows, since x >

0, that 0 < 2x = 2XF2 + rFx + 2 < 2F2(X + 1), so that X > 0.  On the other hand,

2x=n+w=n+ N/n, and from Corollary 2, n = 1   (mod pFj), son > pFj + I >

BXFX + 1.  Hence, using Lemma 1 and (10), 2XF2 + rF, + 2 = 2x = n + N/n <

(T^F, + 1) + TV/(FjFj + 1) < (£,F, + 1) + 2F2 + (r - Ax)Fj + 1 = 2F,2 4- rFx

+ 2.  Consequently, X < 1.  Thus, X = 0 and rFx + 2 = 2x = (c + d)Fx + 2, which

implies r = c 4- d.  Then 2Fts + r = Rx — cdFx + c + d gives 2s = cd ^ 0.
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Finally, r2 - 8s = (c + d)2 - 4cd = (c - d)2.

(ii) (•*=).    The proof is the same as Theorem 5(ii).  Q.E.D.

Remark.   If it happens that Rx   is a pseudoprime but Bx is not large enough for

(10) to be satisfied, then a primality investigation can be carried out on Rx itself (see

Brillhart [3, p. 448]).  If it can be shown that Rx is prime, then the theorems of Sec-

tion 2 can be used to show TV is prime.  If, however, it is difficult to show that Rx is

prime, Theorem 4 can at least be used (with the factors of Rx - 1) to establish a lower

bound for the prime factors of Rx, which, if it exceeds Bx, can replace Bx in Theorem 7.

4. Lucas Sequences.  The primality theory which was established in the preceding

sections was based on factoring TV - 1.   In this section and the two that follow, a

primality theory is developed which depends on factoring TV + 1.

Central to the TV + 1 theory are the divisibility properties of certain second order

recurring sequences known as Lucas sequences.  These properties, which contain Fer-

mat's theorem as a special case, will be reviewed here along with several other results that

apply to the later development. Some of the more familiar results will be given with-

out proof  (see Lucas [10] ).

The Lucas sequences {Uk} and {Vk} are defined recursively by the formulas:

Uk+2=PUk+l-QUk,     k>0,   u0 = o,   ux = \,

Vk+2=PVk+l-QVk,     k>0,   V0 = 2,    VX=P,

where P and Q are integers such that D = P2 — 4ß =/= 0.  (In case several sequences,

defined by P¡ and Q¡, are used, the notation {U^} and {V^} will be employed.)

If a and ß are the (unequal) roots of x2 - Px + Q = 0, then the members of

these sequences can be expressed in terms of a and ß by the equations:

Uk = (ak - ßk)/(a - ß)   and    Vk = ak + ßk,      k > 0.

From these formulas four useful identities can be derived:

(ii) u2k = ukvk,

(12) DU2 = V2k - 2Qk,

(13) V2 -DU2k = 4Qk,

(14) 2Vr+s=VrVs+DUrUs.

In what follows the notation et will be used for the value of the Jacobi symbol

(D/t).

The main divisibility properties of these sequences are contained in the theorems

and corollaries which follow.

Theorem 8.  (a) Ifp^2Q,thenUD_e   =0  (mod p).y    p

(b) Ifp\2QD,then   V =2Q^-^p)n  (mod p).
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Remark. Theorem 8(a) is the generalization of Fermat's theorem mentioned earlier.

As such, it could also be used as a test for compositeness: IfTV'f'g andTV'f'iJ^       , then
N

TV is composite.  (Fermat's theorem can be obtained from Theorem 8(a) in the following

way:   Let p be an odd prime such that p \a(a — 1).  Consider the Lucas sequence with

OL = a  and0 = 1, soD = (a - l)2.  Then ep = 1 andap_1 - 1 = (a - \)U    x =0

(mod p).)

Theorem 9. Ifp\2QD, then P\U(p_e )/2  if and only if (Q/p) = 1.

Proof.   Identity (12), Theorem 8(b), and Euler's criterion give

DU2p_£p)l2 = Vp_€p - 2Q(p-eP)l2 =2Q(1~eP)l2 - 2(Q/p)Qil-eP)l2

= 2Q(l'ePy2{l-(Q/p)}    (modp),

from which the theorem immediately follows.  Q.E.D.

Corollary 4.   Ifp\2QD, then p\ V^p_e )/2 if and only if (Q/p) = - 1.

Proof.   This follows from Theorem 8, (11), Theorem 9, and (13).  Q.E.D.

From Corollary 4 a test for compositeness can also be obtained.

Corollary 5.   Suppose N^QDand that (Q/N) - - I. IfN^V{N_e   )/2,

then TV is composite.

Remark.   The residues of U   and Vm   (mod TV), which must be computed in

these theorems, can be computed with about triple the work of computing a power

(mod TV).  An efficient method for calculating Vm   (mod TV)  is discussed in detail in

Lehmer [8, p. 129].  To compute Um   (mod TV) one can use the formulas:   U2k =

UkVk and V2k = Vk - 2Qk   for doubling the subscript, and U2k+X  =

(PU2k + V2k)/2 and V2k+X = (DU2k + PV2k)/2 for a "side-step" of 1. The sequence of

doublings and side-steps to be followed is easily obtained from the binary expansion of m.

Theorem 8 shows that an odd prime p, not dividing Q, will divide at least one

term of {Uk}, namely Ue  .  The least positive k such that p\Uk is called the "rank

of apparition" of p (or just "rank") and is denoted here by p(p).  (If several Lucas

sequences {U^} are being employed, then p¡(p)will denote rank in {Uj¡.')}.)  This

notation will also designate the rank of a composite number.

Theorem 10.  Suppose p\2Q and that pa II Up(p), a > 1.  Then Pa+ßWmp(p)

if and only if p^Wm.

Remark.   If a prime p divides Q but does not divide P, then p-\Uk, k> \.

When (TV, Q) = 1, the following formula for p(TV) can be obtained from Theorems

8(a) and 10:
P(N)=  LCM  [pKKmaX(7ra,',0)l

where TV = ITf=1 rij* and n^W^.y

Theorem 11.  Suppose (TV, Q) = 1.  Then

(a)  p(N) exists.
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(b) N\Ukifandonlyifp(N)\k.

It will be convenient to introduce a function, similar to the Euler 0 function,

which will be of use in deriving the primality theorems.

Definition.   If (TV, D) = 1 and TV = W¡=, n¡*, let

^(N,D)=2y-° n («/-o»?'-1-
f=i '

(This function is not a generalization of the Euler function, because of the power of 2

in front of the product.)

Theorem 12.  // (TV, D) = 1, then t//(TV, D) = TV - ejy */aw? on/y //TV z's prime.

Proof.    (•*=).   Clear from the definition of \¡i.

(=>).   The statement will be proved in the equivalent form:

If TV is composite, then <//(TV, D) =£ TV - eN.

Case 1. s = 1, i.e., TV = n7, ?> 2.  77ie«

i//(TV, D) = (n - e„)n7" ' = TV - TVe„/w J=N- eN.

Case 2. s > 2. In this case

W D) = 2U fc(/i, - e„>J<"-1 < 2 n  W*i + O"?''"1
/= i ' i=i

= 2TVn^(l+i-)<2Tv(|)(|)...<f <TV_1.      Q.E.D.

Corollary 6.  //(TV, D) = 1, then N - eN\i//(TV, Í)) implies that TV z's priwe.

Proof.   UN is composite, then i//(TV, D) < TV - 1 in Case 2 of the above proof.

In Case 1, TV - e^ |TV - TVen/« implies en = — 1.  However, in that case n1 ± 1 \ny +

n7_1, which is impossible when 7 > 2.  Q.E.D.

Corollary 7.  //(TV, Q/J) = 1, then p(N)\\p(N, D).

Proof.   The condition (TV, QD) = 1 implies TV has a rank.  Thus

p(TV)=  LCM [p(H>max(^-^0>]

which divides

LCM [(«,. - e„>7/_1] = 2  LCM [H(n, - e_ )«7'_1],

which divides

2 fl Hn¡ - e„.)«/'_1 = WTV, D).      Q.E.D.
i=l '

5.   Theorems Requiring a Complete Factorization of TV + 1. With the preparation

in the last section it is now possible to prove a collection of theorems based on the

factorization of TV 4- 1.  These theorems, which are proved in this and the next section,

exactly parallel Theorems 1—7.

Lemma 2.   Let {Uk} be a Lucas sequence for which (D/N) = - 1 and N\UN+ x.
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Then (TV, QD) = 1, i//(TV, D) is defined, and TV has a rank which divides TV + 1.

Proof.   Since the Jacobi symbol (D/N) =£ 0, it follows that (TV, D) ~ 1.  If there

were a prime n dividing both TV and Q, it would follow from D = P2 — 4Q that n \ P,

since n -\D.   But then the remark following Theorem 10 would imply n, and therefore

TV, has no rank, contrary to the fact that TV| UN+ x.  Therefore, (TV, Q) = 1.  The

remainder of the conclusion follows from the definition of i//(TV, D) and Theorem 11.

Q.E.D.
Theorem 13.  Let TV 4- 1 = IT (jr.', and consider the set U of Lucas sequences

{Uk} with the given discriminant D for which the Jacobi symbol (D/N) = — 1. If for

each q¡ there exists a Lucas sequence in U such that N\ uff   , but N-^Uy^+ ..   , then

TV is prime.

Proof. It is clear from Lemma 2 that p¡(N)\N 4- 1. But p,.(TV)>(TV 4- l)lqt, so

¿?f''lp,(TV). By Corollary 7, pi(N)\\p(N,D) for all/. This implies <jf'' | \J/(N, D). Thus,

TV 4- 11 t//(TV, D), so TV is prime by Corollary 6.  Q.E.D.

Remarks.   1.  This theorem corresponds to Theorem 1 in that it allows for a

change to another sequence with the same discriminant if TV| UrA, ...    for some q-.

As such, it constitutes an improvement over the earlier theorem in which a single se-

quence with P = 1 was employed (see [8, p. 128]).

2.  From one Lucas sequence with Px, Qx, and D, another with the same D can

be obtained by setting P2= Px 4-2 and Q2 = Px 4- Qx 4- 1.  (It is necessary to check

that (TV, ß,) = 1.)

The next theorem improves on Theorem 13 in that only V's (with smaller sub-

scripts) are calculated in the primality test (see the remark following Corollary 5),

(also see Theorem 3, p. 128 in [8]).

Theorem 14.  Let TV 4- 1 = ilqt ' and consider the set \J of Lucas sequences

{Vk^} with the given discriminant D for which the Jacobi symbol (D/N) = — 1. If for

each q¡ there exists a sequence in \J   such that

O5) TVI7(,'>
JV| K(AT+l)/2'

but (for qt > 2)

1   K(AT+1)/2V

then TV is prime.

Proof.   From (11) and (15) it follows for each i that TV| UJp+ x, so p,(TV) exists

and p,(TV)|TV 4- 1 by Theorem 11(b).  Also, for each qf > 2, TVt ̂ $4.,),,.; for, if

Wl U(N+Xyq. for some i, then from Theorem 11(b),

(17) NIU0)

where s = (q¡ - l)/2.  But then, using (15), (14), and (17), it follows that
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n = 9 I/O') = ? pO')
U ~ ZK(AT+l)/2        ZK[i(iV+l)/<îI.+ (iV+l)/2rî(.]

= i/(0 T/(i) + n/y(0 r/(0
Vs(N+l)/qiy{N+l)l2q¡ T UUs{N+ 1 )/q,    (JV + 1 )/2qf

= FSv+i ),</$+, )/2«,.    (modiV).

Now, (TV, ̂ i]^+ j w   ) = 1; for, if a prime divided both numbers, it would divide

uHN+i)/q- by (17)>and so by (13)would divide ö- But byljdmm& 2> (N> Q) = *•

Hence, TV| V^+X)l2    , which contradicts (16). Thus,TV is prime by Theorem 13. Q.E.D.

6.  Theorems in Which TV 4- 1 is Partially Factored.

Theorem 15.  Let TV 4- 1 = mq, where q is an odd prime such that 2q - 1 >

\/TV.   // there exists a Lucas sequence {Vk} of discriminant D with (D/N) = - 1 for

which TV | V(N+ j y2, but N \ Vm /2,then TV is prime.

Proof.   From (11) it follows that TV| UN+ x, so p(TV) exists and p(TV) | TV 4- 1 by

Theorem 11(b).  Also, using the same argument as in the proof of Theorem 14, TV'f'

U(N+i)/q > so P(TV)-f(TV 4- l)/q.   Hence, q \p(N), and since p(TV)| i//(TV, D) by Corollary

7,q\\p(N,D).   But

V/(TV, D)\N n (»,■ - e   ) = (mi? - 1) ft (»/ - e .),
/=i ' /=i

so (71 FI¿_ j («¿ - en ), or q | «¿ - en  for some /', say i = 1.  Thus « j = en     (mod 2<7).

Also,TV = - 1   (mod 2q), so N/nx = - en    (mod 2q).  But «j > 2q - 1 > \/TV, which

implies 1 <TV/«j <\/TV <2q — 1.  Thus, the only possibility in the interval

[1, 2(7 - 1) is that TV/«j = 1, i.e., TV is prime.  Q.E.D.

Throughout this section the notation TV 4- 1 = F2R2 will be used, where F2 is

the even factored portion of TV 4- \,R2 is > 1, and (F2, R2) = 1.

Theorem 16  (Morrison [12]).   Consider the set U of Lucus sequences {U^}

with the given discriminant D for which (D/N) = — 1.  If for each prime q¡ dividing F2

there exists a Lucas sequence in U such that N\U^+   and (U\ll, , TV) = 1, then

each prime divisor n of N is = en   (mod F2).

Proof.   It is clear from Lemma 2 that p¡(N)\N 4- 1, which implies p¡(n)\N + 1.

Since n \ t/g+,       , Theorem 11 (b) implies p,.(«) \(N 4- \)lq{. Thus, q\l \ Pi(n),

where q. ' IIF2.  Also, p¡(n)\n - en, so q¡ ' |n - e„ for all i, that is, F2 \n - en. Q.E.D.

For convenience of reference put:

(III)   For each prime q¡ dividing F2 there exists a Lucas sequence   {iftO}   with

discriminant D for which (D/N) = - 1, TV| UJp+i, and (U$+ x)/q , N) = 1.

Corollary 8.  Assume (III). If F2 > V?V 4- 1, then TV is prime.

Proof.   n + l>n-en>F2> \¿N + 1, which implies TV is prime.  Q.E.D.

In what follows the notation Fx = F,/2 andF2 = F2\2 will be used.

Theorem 17.  Assume (III) and let m be > \.  When m > I, then assume further
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that\F2 ± If TV, 1 <\<m.  If
TV < (mF2 - 1) [2F2 + (m - \r\)F2 4- 1],

where r and s are defined by R2 = 2F2s + r, \r\ < F2, then TV is prime if and only if

s = 0 or r2 4- 8s ^ D.

Proof.   The theorem will be proved in the equivalent form: TV is composite if and

only if s =¿0andr2 4- 8s = D.

(i)    (=>) .  Since TV = - 1   (mod F2), it follows from Theorem 16 that TV =

(cF2 — \)(dF2 4- 1), c, d > m.   Also, R2 is odd and F2 is even, so the equation F2 =

(TV 4- 1)/F2 = cdF2 + c — d  implies that  c - d  is odd, so cd is even.  Hence, from

(18) cdF2+c - d = R2=2F2s+r

it follows that

(19) c-d = r   (mod 2F2).

On the other hand, (c - m)(d + m)> 0 implies that cd> (d - c)m + m2, so that

(mF2 - l)[2Ff + (m - r)F2 + 1] > (mF2 - 1)[2F2 4- (m - \r\)F2 4- 1]

> TV = cdF] + (c - d)F2- 1> [(d - c)m 4- m2]F2

+ (c - d)F2 - 1 = (mF2 - 1) [(d - c 4- m)F2 4- 1].

Thus, 2F2 +(m - r)F2 4- 1 > (d - c + m)F2 4- 1, or

(20) -2F2+r<c -d.

Also, (c + m)(d — m)> 0 implies cd > (c - d)m 4- m2, so that

(mF2 + 1)[2F22 + (m+ r)F2 -\\> (mF2 - 1)[2F2 + (m - \r\)F2 + 1]

>TV = cdF2 + (c - d)F2 - 1 > [(c - d)m + m2]F2 + (c - d)F2 - 1

= (mF2 + 1) [(c - d + m)F2 - 1].

Thus, 2F| +(m + r)F2 - 1 > (c - d + m)F2 - l,oxc -d<r + 2F2.

Combining this result with (19) and (20) gives c - d = r.

Thus, from (18) it follows that 2s = cd J= 0.   Finally, r2 + 8s = (c - d)2 +

4cd = (c + d)2.

(ii)   (<=). With s ^ 0 and, say, r2 + 8s = t2, then

TV = F2R2 - 1 = F2(2F2s 4- r) - 1

= [(í-r)F24-l][(í4-r)F2-l],

where the factors on the right are > 1, since s =£ 0.  Q.E.D.

Remark.   The value of r in Theorem 17 is chosen to be the absolutely least re-

mainder because c - d may well be negative.
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Theorem 18.  Let n be a prime divisor of N.  If for some Lucas sequence {Uk}

for which (D/N) = - 1, TV| UN+, and

(21) (UF2,N)=l,

then n = en   (mod q), where q is some prime divisor of R2 depending on n.

Proof.   By Lemma 2 and Theorem 8(a), p(n)\n - en and p(n)|TV 4- 1 = F2R2.

But (21) implies p(n)\F2, so (p(n), R2) > 1, i.e., there exists a prime q such that

q\p(n) and q\R2.  Hence, q\n - en.   Q.E.D.

As a further abbreviation put:

(IV)   For some Lucas sequence {Uk} for which (D/N) = - 1, N\UN+X and

(U(N+i)/R2,N)=l.

Remark.   As in (II), the subscript of U is written to suggest (III) and (IV) can be

computed together, R2 being treated as the final "prime" factor of TV 4- 1.

Corollary 9.  Assume (III) and (IV), and let n be a prime divisor of N.   Then

n = en   (mod qF2), where q is some prime divisor of R2 depending on n.

Proof.   Since (F2, F2) = 1, the corollary follows from Theorems 16 and 18.

Q.E.D.
Corollary 10. Assume (III) and (IV).  If all the prime factors of R2 are > B2

and B2F2 > -y/TV 4- 1, then TV is prime.

Proof, n + \>n - en >qF2 >B2F2 >\/N+ 1, which implies TV is prime. Q.E.D.

Theorem 19.  Assume (III) and (IV), and also that the prime factors of R2 are

>B2.  If

(22) N<(B2F2 - 1)[2F22 4- (B2 - \r\)F2 4- 1],

where r and s are defined by R2 = 2F2s + r, \r\ < F2, then TV is prime if and only if

s = Oorr2 4- 8s ¥= D .

Proof.   The theorem will be proved in the equivalent form: TV is composite if and

only ifs^Oandr2 + 8s = D.

(i)    (=*) .  Let n be a prime factor of TV, and write TV = nw, w > 1.  Then from

Corollary 9, n = en   (mod qF2), and since TV = - 1   (mod qF2), w = - en   (mod qF2).

Then TV = (cF2 + e„)(dF2 - en), where c, d>B2.  Also, F2 is odd and F2 is even, so

F2 = (TV 4- 1)/F2 = cdF2 4- en(d - c),

implies d — c is odd, so cd is even.  Hence, from

(23) cdF2 + en(d - c) = R2 = 2F2s + r

it follows that

en(d-c) = r   (mod 2F2).

On the other hand,
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(c - B2)(d 4- B2) > 0    implies cd > (d - c)B2 + B\

and

(c 4- B2)(d - B2) > 0    implies cd > (c - d)B2 4- B2.

These together imply cd > ± en(d - c)B2 + B\.  Now using (22),

(F2F2-l)[2F224-(52-r)F24-l]

> (B2F2 - 1)[2F2 4- (B2 - \r\)F2 4- 1]

> TV = cdF2 + en(d - c)F2 - 1

> [- en(d - c)B2 + B\ ] Fl 4- e„(d - c)F2 - 1

= (B2F2 - 1) {[- en(d - c) + B2] F2 4- 1}.

Therefore,

2F2+B2-r>-en(d - c)+B2,   or    - 2F2 + r < e„(d - c)

Also,

(F2F2 4- 1) [2F2 + (B2 + r)F2 - 1]

> (B2F2 - 1)[2F22 + (B2 - \r\)F2 4- 1]

> TV = cdF\ + en(d - c)F2 - 1

> [en(d - c)B2 4- B\ ] F\ 4- en(d - c)F2 - 1

= (B2F2 + l){[e„(d-c) + B2]F2-l}.

Thus,

2F2+B2+r>en(d - c)+B2,   or    2F2 + r > en(d - c).

Hence, r = en(d - c) and from (23), 2s = cd ^ 0.  Also,

r2 4- 8s = (d - c)2 4- 4cd = (c + d)2.

(ii) (<=).  Same as Theorem 17(ii).  Q.E.D.

7.   Combined Theorems.   As was mentioned in the introduction, a considerable

advantage is gained by combining the information obtained from factoring both N — 1

and TV 4- 1.  This advantage lies as usual in reducing the total amount of factoring time

by a trade-off with less time-consuming, nontentative tests (such as a GCD) (see [8]).

Of the two theorems given here, Theorem 20 and its corollary have proven to be

quite useful when other primality tests could not be applied.  Theorem 21 treats the

case in which TV ± 1 can be factored algebraically into possibly rather large pieces, each

of which has been factored to a certain extent (see [6, p. 329]).

Theorem 20.  Assume (l)-(W),and suppose the prime factors of Rx and R2

are respectively > Bx and B2.  Define r and s by Rx = F2s 4- r, 0 < r < F2, and let
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G = max(ßj Fx + \,B2F2~\, mFxF2 + rFx + I),      m>\.

Further, in the case that G = wFjF2 4- rFx 4- 1, assume (XFXF2 + rFx + \)^TV,

5q < X < m, where dr0 is the Kronecker delta.   (Note:   When r = 0 and m = 1, the X

interval is empty.)

//TV < G(BXB2FXF2 4- 1), then TV is prime.

Proof (by contradiction).  Assume TV is composite, say TV = nw, n prime and

w > 1.  Then Corollary 2 gives

(24) "-1    (mod pFj),

where p|Fj, and w =«w =TV = FjF, 4- 1 = 1   (mod pFj).  Thus,

(25) w>pFx 4-1 >BXFX + 1.

Similarly, Corollary 9 gives

(26) « = e„    (mod (7F2),

where q\R2, and w = wne„ = TVe„ = (F2R2 - l)en = - en   (mod qF2).  Also,

(27) nw = N = FXRX + I = Fx(sF2 + r) + I = rFx + 1    (mod FXF2),

where rFx 4- 1 < FjF2 4- 1, or more sharply, /Fj 4- 1 < FjF2 - 1, i.e., rFx 4- 1 is the

least positive remainder  (mod FXF2).

Case 1.- en = 1.  Combining (24) and (26) gives

(28) n s 1    (mod pqFxF2),

since (Fj, F2) = 2.  Hence,

n>pqFxF2 + 1 >BXB2FXF2 + 1.

Also, « s l   (mod FjF2) from (28).   Combining this with (27) gives w = nw = rFx +

1   (mod FjF2), which implies w > mFxF2 4- rFt 4- 1.  On the other hand, w = - \

(mod qF2) implies

w>qF2 - 1 >£2F2 - 1.

These results with (25) give w > G.   Thus finally, TV = wn > G(BXB2FXF2 4- 1), which

is a contradiction.  Hence, TV is prime.

Case 2.  en = — 1.  This case is the same as Case 1 with the roles of n and w

reversed and (25) changed to read:   n >BXFX 4- 1.  Q.E.D.

Remarks.   1.  In practice TV - 1 and TV 4- 1 can be factored simultaneously; for

if a trial  divisor d for TV 4- 1 leaves a remainder t + 0, then d will divide TV - 1 if and

only if t = 2.

2.  Usually Bx = B2 when the factoring of TV - 1 and TV 4- 1 is done by the

method of Remark 1.  These factoring bounds may be different, however, if the form

of TV permits algebraic factorization, and the algebraic factors are investigated separately.



636 JOHN BRILLHART, D. H. LEHMER AND J. L. SELFRIDGE

3. If the main inequality of the hypothesis is not satisfied at some point in the

factorization of TV ± 1, there are three ways to increase the size of the product on the

right of the inequality:   increase Bx and B2; find more factors of TV ± 1 (thereby in-

creasing Fj or F2); increase the size of m. What strategy is adopted will, of course, de-

pend on the amount of increase needed to satisfy the inequality.  An excellent example

of the use of this theorem will be found in the next section where the factorizations of

three Mersenne numbersMx61, Mxgi, and Af241 are shown to be complete.   From

these examples, it becomes clear that none of the other hypotheses of Theorem 20 need

to be verified until the inequality on TV has been satisfied, i.e., the auxiliary testing,

which is needed to complete the primality test, is done only after enough factoring data

have been obtained.  (This, of course, is true for the other theorems in this paper.)

Thus, conditions (I)-(IV) are usually referred to as "final tests."

4. The special case when r = 0 occurs when F2 \RX, which implies F2 is odd.

Also, F21TV - 1, and since F2 |TV 4- 1, then F2 12. Thus, F2 = 1.  This case will occur

if and only if TV = 4k + 1 and TV 4- 1 has no "small" odd prime factors.

Corollary 11.   Assume (I)-(IV) and that the prime factors of both Rx and R2

are>B =BX = B2.

(a) // B > (N/F2F2)1 /3, then TV is prime.

(b) IfB> (N/FxF2y/3, then TV is prime.

Proof,   (a) N<B3F2F2 <BFX(B2FXF2 4- 1) < G(B2FXF2 4- 1).  (Note here

that only the first argument in the definition of G is used.  Since the third argument in

this definition is not used at all in this theorem, no divisibility testing is needed in the

hypothesis of the corollary.)

(b)  First observe in the proof of Theorem 20 that p and q are both > B, and

since p + q, pq> B(B 4- 2).  Thus, the inequality following (28) can be written n >

B(B 4- 2)FjF2 4- 1.  Consequently, when B = Bx = B2, the inequality in the theorem

can be strengthened to read TV < G[B(B + 2)FXF2 4- 1].   Then

TV < B3FXF¡ < (BF2 - 1) [B(B + 2)F,F2 4- 1]

< G[B(B + 2)FjF2 4- 1].      Q.E.D.

Theorem 21.  Let TV - 1 = Wi=x F*'' and TV 4- 1 = Usi=x sf', where R¡ and S,

are not necessarily prime, and (R¡, F) = (S¡, S.) = 1, / ¥= j.  Suppose the prime fac-

tors of R¡ and S¡ are respectively greater than B¡ and C¡.  Let B = n¿_ j B. ' and C =

nj_ x C, '.  Assume (II) and (IV) are satisfied respectively for each R¡ and S¡ (where

not necessarily the same base or Lucas sequence is used). Let G = max(F 4- 1, C - 1).

//TV < G(BC/2 4- 1), then TV is prime.

Proof.   If TV is not prime, then TV = nw, where n is prime and w > 1.  Let a(. be

the base used for R¡ in (II) and suppose the order of a,-  (mod n) is e¡.  Then e¡ |TV - 1,

but e¡ \(N — l)/Rj•  Hence, there is a prime divisor p(. of F(. which divides e¡ to R¡'s

full power in TV - 1; i.e., p¡ '\e¡.  But e'An - 1.  Thus, since (R¡, R¡) =1, i =£j,

ïlri= iPi'\n - 1.  Also, w = nw = TV = 1   (mod ITJL j p. ').  On the other hand, if
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{£/£')} is the sequence used for S¡ in (IV) and p¡(n) is the rank of« in {U^}, then by

Lemma 2, p¿(«)|TV 4- 1, but pi(n)-\'(N 4- 1)/S¡.  Thus there is a prime divisor q. of S¡

which divides p((«) to S¡% full power in TV 4- 1; i.e., q¡ '\p¡(n).   But p.(n)\n — en , so

since (S,, S;) = 1,  ITJ=1 (¡rf'|n - e„.  Also,

w = ennw = enN

Case 1.  en = 1.  In this case

e„     (mod ft (zf'j .

« = 1     (mod ft (/f'j,

so since (TV - 1,TV 4- 1) = 2,

2n = 2     (mod ft pV ft «?')     and   w - l     (mod ft ?"'

(Note:  p¡ and <jrf may be odd for all i.)  Hence,

« > ̂ (ft rf')fi rf' +1 > ̂ (n ̂ ') n ^+1 =f +1
and

w > n pf ' +1 > n a*' +1 = 5 +1.
i=i        /=i

Also, w = - 1   (mod n^=, q¡ '), so

w>ft iff-l>n cf'-l=C-l.
/= i (= i

Thus, TV = nw> (BC/2 4- l)max(F 4- 1, C - 1) = G(FC/2 4- 1), a contradiction.

Case 2.  e_ = — 1.  This case is the same as Case 1 with the roles of n and w

reversed.  Q.E.D.

Remark.  An example for which Theorem 21 might be of use is:

Let TV be a pseudoprime of the form (a '28 4- l)/257.  Then

TV- 1 =(a128 -256)/257

= (a16 - 2)(a16 4- 2)(a16 - 2a8 4- 2)(a16 4- 2a8 4- 2)(a64 4- 16)/257;

8.  Numerical Results.  The 131 complete factorizations given in Table 1 are the

results obtained by the authors over the last seven years on numbers of the form 2m

± 1, 22r ± 2r + 1, and 22'-1 ± 2r 4- 1 (see [4, p. 87]).  (Note that factorizations of

both the primitive and algebraic parts of 2447 - 1 and 2471 — 1 appear in Table 1

and Section 9.)

In Table 1, all factors listed are prime. Those preceding a colon are algebraic;

those following a colon are primitive. An asterisk indicates the factor was first dis-

covered by R. M. Merson.



1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13-

14.

15.

16.

17.

18.

19.

20.

21.

22.

23-

24.

25.

26.

27-

28.

29.

30.
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TABLE 1.  Complete Factorizations

294 + 247 + 1

2101 _ 251 + ,

2101 + 251 + 1

,102 251 + 1

2103 + 1

2104 _ 252 + 1

253 + i

255 + 1

256 + 1

257 + 1

,106

,109

,112

,111

7 : 4375578271-646675035253258729

5 : 9491060093'53425037363873248657

: 809-5218735279937-600503817460697

3-19 : 123931-26159806891-27439122228481

3 : 4l5l4l630193-8l4276708l771726l71

241 : 8Ü159375948762099254554456081

3 ; 6043-4475130366518102084427698737

5 : 74323515777853-1746518852140345553

97-673 : 2017-25629623713-1538595959564161

2
2"" -2-" + 1 = 3-19" : I9177458387940268II63497666122II

- 259 + 1 = 3 : 13099-4453762543897-1898685496465999273

= 7 : l8408l-2798994l729-9213624084535989031

= 3-43-43691 : 823679683-143162553165560959297

= 5-29-26317 : 9521-l8292898984l569l6l56396l01

2118 + 259 + 1

2119 + ,

2119 + 260 + 1

2120 _ 260 + 1 = 1433.38737 : i68692292721'469775495C6243496l

2121 _ 26l + ,

2121 + 1

2121 + 26l + 1 = 5.3g7 . 1339272539833668386958920468400193

= 2113 : 3389-9l96l>40369625840108070l4809213

= 3-683 : 117371-11054184582797800455736061107

„122 261 + 1

2122 + 261 + x

2124 + 1

ol25 _ ,

2125 + 1

=   3 :  1772303994379887829769795077302561451

= 7 : 367-55633-37201708625305146303973352041

= 17 : 290657-377O20264l-ll4l629l80401976895873

= 31-601-1801 : 2690898o60Ol-47io883l68879506O01

= 3-11-251-4051 : 229668251-5519485418336288303251

,126 ,63 + 1 = 3-87211

= 3 : 5671372782OI5641O577229IOI238628O35243

379-119827-127391413339
•56202143607667

2127 + 1

2127 +2+1=5: 18797-72118729-2792688414613

,128

,129

2M + 1 -

265 + 1

,131

,131 +

266 + 1

.898835788O5OI

769.442499826945303593556473164314770689

13-173-101653-500177 :
• 5951631966296685834686149

5 : 6428ll237-2745098l89'3085446954097694273O9

3 : 1049-4744297*-l8233ll2868l20778l78439i8l36ll

*Merson factor
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43-

44.

45.

46.

47.

48.

49.

50.

51.

52.

53-

54.

,131

,133

,133

,133

,136

,136

,137

,137

,l3t

,138

,139

,139

,139

,139

,140

,141

,142

,143

,143

,143

,145

,145

,145

,145

+   2
66

+  1

-   267   +   1

+   1

+   267   +   1

TABLE 1 (Continued)

: 269665073-810791440841-12450751815271172041

5-29-229-457 : 1597
•449329386292232535250647435097

= 3-43-174763 : 4523-10678829O443848295284382097O33

113-525313 : 2129-126848469231149
•679253585011429

- 2  + 1 = 241 : 8l6l-40932193*-l467129352609
•737539985835313

+ 1      = 257-383521 : 2368179743873-373200722470799764577

- 269 + 1 =   : I89O6I.9215257079II8405873906173308863627OI

+ 1      =3

,69

1097-15619-32127963626435681
•105498212027592977

+ 1 = 3-19 : 6113142872404227834840443898241613032969

69+ 2 ^  + 1 = 73

270 + 1

79903-634569679-2232578641663
•42166482463639

1408349-1573677 4913-492717674609
-1276366OO54721

- 1

+ 1

+ 270 + 1

+ 1

+ 271 + ]

: 5625767248687-1238761322O52O8335762278423601

= 3 : 450b937*-5154263952466l795300074l74250365699

: 557-1251163891299967635860272509229764287909

= 17-61681-15790321 : 84179842077657862OII86788968I

13-140737471578113 : 5641
•270097268484167653999069

271 + 1 3   :   5113-17467-102241
•203525545766301306933226271929

272 +  1 =  53-157-2113   :   958673-661521349351105339668937661297

1

+ 1

23-89-8191 : 724153-158822951431
.5782172113400990737

3-683-2731 : 2003-6156182033-10425285443
-15500487753323

273 + 1 = 41-536903681 168781
•12004541501954811085302214141

+ 1

= 31.233.1103-2089 :
2679895157783862814690027494144991

= 3-H-59-3033169 : 7553921*
•999802854724715300883845411

+  273 + 1 =  52-107367629   :   17401-244716883381
•3902095192430070721

*Merson factor
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TABLE 1 (Continued)

55. 2li<7   +   274  +  1  =   13-113-1429-4981857697937   :

17059410504738323992180849

56. 2149  +1 =  3   :   1193-650833-38369587*
•7984559573504259856359124657

57-     2150 - 275 + 1 =  3-19-18837001   :   4714696801
•281941472953710177758647201

58.     2153  + 277  + 1 =  5-109-409-3061-13669-26317   :   613-318194713
•238495197879143209

59-     215    - 277  + 1 =  3-67-5419-20857   :   14323
•70180796165277040349245703851057

60. 215 + 277 + 1 =.72-337-599479 : 463
•4982397651178256151338302204762057

61. 2155 - 278 + 1 = 52,868l-49477 : 37201-87421-52597081*
•24865899693834809641

62. 2155 + 1     = 3-H-715827883 : 11161-5947603221397891
•29126056043168521

63. 2157 - 1     = : 85213320i«60726444l67'l654058017289
■2134387368610417

64. 2158 - 279 + 1 = 3 : 647011-13664473*
•13775694692898492184744709216599873

65. 2159 - 28° + 1 = 13-15358129-586477649 : 207973
•30007459254393181618012897

66. 2159 + 280 + 1 = 5-1801439824104653 : 10177
•7971862004867103303293462593

67. 2l6° +1      = 641-6700417 : 3602561*
•9445568495348456305599183855808I

68. 2161 - 281 + 1 = 113-277-30269 : 3221-169373-209160253
•27037028118448801270021

69. 2161 - 1      = 47'127-17848l : 1289'3l88767-450760^4553
•14808607715315782481

70. 2161 +1      = 3-43-2796203 :
81034674927597923271498OO361564410265219

71. 2161 + 281 + 1 = 5-29-1013-1657 : 1933-298817-115927640417
•179351574736387915177

72. 2 5 + 2 3 + 1 = 13-41-61-2113-312709-415878438361 :
391249826881-13379250952 981

73. 2167 - 1 : 2349023-prime

74. 2  7 +1       = 3 : prime

75. 2168 - 2  + 1 = 433-38737 : l009-2ll69-2627857*-269389009
•1475204679190128571777

76. 2171 - 286 + 1 = 5-109-229-457-275415303169 : 4598533*
•41435606371227835355919073

*Merson factor
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TABLE 1 (Continued)

2174 +  2  "^   +   1  =  73   :   prime

2175 _ 288 + x _  m.101.113.8101-7416361 : 701
•243OO659246935171985503227519631OI

2175 +1     = 3-11-43-251-281-4051-86171 : 1051-110251
•347833278451-34010032331525251

2175 + 288 + 1 = 53-29-268501-4739238l :
IO38213793447841940908293355871461401

2177 _ 289 + 1 = 13.5521693.104399276341 : 709-12037
•2995240087117909078735942093

2177 + 289 + 1 = 5-1181-3541-157649-174877 : 31153-5397793*
94789873-20847858316750657

3456749-667055378149 : 508c
4209508589941 -19125556519918081

593-231769777 : 1392776941
4964166554103541-1258710725115650761

2183 - 292 + 1 = 1

2185 - 293 + 1 = 41-593-231769777 : 1392776941

2185 +1      = 3-11-1777-25781083 : 1481-28136651*
•7784293653978876O854C61833087328I

2189 - 295 + 1 = 5-29-109-14449-246241-40388473189 : 757
•456376431053626339473533320957

29 + 295 + 1 =  13-37-H3-1429-279073-11875O098349   :
304832756195865229284807891468769

2190 _  295 + 1 =  3 • 331-571-160465489   :   IIOI81I
•1565399070589631354726923722004116936

lQl
2  y    +1 =  3   :   prime

2195 _ 298 + 1 = 5*521-1321-l6l3-3121-2l84l-5l48l'34110701 :
2341-723447661-892527899379324l

2195 + 298 + 1 = i32-4l-53-6l-l57-313-l249-i08l4098955868l :
468781-7 20453772 427518446437641

2196 +1      = 17-15790321 : 7057-273617*1007441
•375327457-1405628248417-364565561997841

2197 - 1 : 7487-prime

1QQ
2 " +1      = 3 : prime

2200 _ 2100 +1= 241-4562284561 : prime

201 _ 2101 +  1  =  I3.i5i52453'9739278030221 : 3217-192961
-214473433-71848008781-175132692529

201 + 2101 + 1 = 5.269-42875177-2559066073 : 10453
-132661-15704900959651293774270521395753

22°3 _ 1       = 127-233-1103-2089 : 136417-121793911
•II348O55580883272OIIO9O856O5317536III3

2205 +i       = 3.II.83.8831418697 : prime

*Merson factor
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100.

101.

102.

103.

104.

105.

106.

107-

108.

109-

110.

111.

112.

113.

114.

115.

116.

117-

118.

119-

TABLE 1 (Continued)

2205  +   2103  +  !  „   4i2.181549-12112549

,207 ,104

2207 + 2104

,213

,213

,215

,217

,107

+ 2
107

+ 2

821-269896441
82777720757144341.758399801407611361

+ 1 = 13-37-277'30269*54l5624023749 : 829
•853669-26785337l49-4968l708ll09150685921

+ 1 = 5-109-1013-1657-70334392823809 : 3313
•18217-318781-6542857-25395382141805460457

+ 1 = 5-569-148587949-5585522857 : 266677
•1396429*'18369973*-40524027877
•20111008087273

+ 1 = 13-4999465853-472287102421 : 853-189997
•2646185328486854129693169911139349

+ 1 = 52-175921776558l : 370661-1952201*
•4538991421-260125854015641
•1401345270171101

2109 + 1

2220 + 1

222    111
2    + 2    + 1

113-5581-384773 : prime

17-353-6l68l-29315424l7 : 109121-148721
•34O46760O1-110354657O8081
•2546717317681681

73 : 1999-10657'l6983l-123876l*-36085879*
•199381087-698962539799*4096460559560875111

2225 + 2113 + 1 = 53.i09'i8l-1321-54O01'639Ol«268501-l3334701
921984016957 01-30711639849O301-62

,231 ,116 + 1 =  13-H3-1429-2113-8317-312709-76O96559910757
3931002956111648245378728475226109181

2231  +  2116  +  1  =  5-29-397-14449-4327489-869467061-3019242689
365212445341097287826412838353955921

:   1399-135607-622577-prime

+   1  =   5-317-381364611866507317969   :   151681-prime

479-1913-5737•176383«134000609-prime

22000409-prime

,233

,237

,239

,241

119

,255

,255

,255

,272

,128

+ 1

+ 212E

+ 1 = 13

= 3'

+ 1 = 5'

41-6l-137-953-1326700741
7226904352843746841 : 51001-2949879781
611787251461-15455023589221

11-307-331-2857-6529-43691
268314230360653526II : 12241
4l856298635756l-51366l49455494753931

409-1021-1321-3061-4421-13669-26317
5508OI.2365OO6I : 15571321
42515530888344717190444817256OI

,136 + 1 = 97-673 prime

*Merson factor
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TABLE 1 (Continued)

120.      2273   +   2137   +   1

121.      2283   -   2142   +   1

122 .     2285  -  2143   +  1

128.

129.

130.

131.

,356 + x

,563

,346 +

5-29-1093   -1613-3121-14449.21841
•8861085190774909   :   1948129
•3194753987813988499397428643895659569

5   :   prime

52-229-457-1321-54721-275415303169
•276696631250953741 : 185821-247381
•3996146881 • 23480412082098913326841

123. 2298 + 2lit9 + 1

124. 2313 + 1

^14 157
125. 2J + 2 J' + 1

126. 2315 + 2158 + 1

127.  2318 - 2159 + 1

2282 + 1

2613 _ 2307 + 1

,691

prime

prime

prime

13-37-41-61-113-1429-7416361-29247661
•Il8750098349-104l8l5865690l8l :
1711081-430839361

•1736945952990905777323344246I

3-19 : prime

17 : prime

prime

prime

prime

TABLE 2.   Completed Factorizations

2m - 1, m odd:  m = I-I67,171,175-183,189,195,197,201,203 ,207 ,
225,231,233,239,241,255,261,315,333,447,471,521,607,1279,2203,
2281,3217,4253,4423,9689,9941,11213,19937.

2m + 1: m = 0-150,153-156,158-162,165-168,170,171,174,
175,177,178,l80,l82,l83,l85,l86,l89-192,194-196,198,199,201,202,
204-207,210,213,214,218,220,222,226,230,231,234,237,238,242,246,
250,252,254,255,258,262,266,270,278,282,285,286,290,294,300,306,
313,318,322,330,342,350,354,356,378,390,402,408,414,426,462,477,
510,566.

2 - 2r + 1, m = 2r - 1: m = 1-147 ,151-155,159,l6l,165,167,171,
17 5,177,183,185,189,195,201,207,213,217,231,237-241,255,283,285,
353,367,457,563,613,691.

2m + 2r

177,189
+ 1, m = 2r-l:  m = 1-135,139-147,153,157-165,171,175,

,195,201,207,213,215,225,231,255,273,283,315,379.
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TABLE 3.   Mersenne Status List

M    =   2b
P

1,     p    prime,     p  <  257

Character of

2,3,5,7,13,17,19,31,61,89,107,127 Prime

(All other p  under  172),
179,181,197,233,239,241

Composite and completely
factored

173,191,193,211,223,229,251 Cofactor is composite

199,227,257 Composite but no factor
known

Table 2 shows which numbers of the above forms have been completely factored.

(Also from Table 2 it is not difficult to discover that 2
500 1,2 600 1,2700-1,

,816 1, and 21020 1 have been completely factored.)  Table 3 gives the present

status of the "original" Mersenne numbers M   = 2P — 1, p a prime < 257.

(The eight new factorizations ofMp are for p = 137, 139, 149, 157, 167, 197, 239,

and 241.)

Several different methods were used to complete the factorization of those num-

bers in Table 1 whose cofactors were composite.  Notable examples are:

(i)  The cofactors of 2139 - 1, 2205 4- 2103 4- 1, and 2255 4- 1 were factored

by a continued fraction method on the IBM 360/91 at the Campus Computing Net-

work at UCLA (see Morrison and Brillhart [13]).  The times required for these factor-

izations were 80, 15, and 12 minutes respectively.

(Ü)  2101 4- 2S1 4- 1,2109 - 255 4- 1,2136 4- l,and 2137 4 1 were factored

by representing their composite cofactors as a difference of squares, using the delay-

line sieve DLS 127 at UC, Berkeley.  (2136 4- 1 is particularly notable, having run on

DLS 127 for 2600 hours (!) before it factored.)

(hi)  2102 — 251 4- 1 was factored by expressing its cofactor as a sum of two

squares in two different ways on DLS 127.

(iv)  2131 4-2664- 1,2157- l,and2185 2     4-1 were completed on DLS

127 as in (ii) only after a new prime factor was found using idle time on the CDC 6400

at UC, Berkeley.  Most surprising among these is the Mersenne number 2157 — 1,

which split unexpectedly into four factors.

Those numbers having a pseudoprime cofactor for some base a > 2 (see [4, p. 91])

were proved to be prime by some primality test (see Sections 2, 3, or 5).  Of special

interest are the Mersenne numbers Mxbn, Mxgi, M239, and M24x, which were tested

using Corollary 11.

To illustrate the use of this corollary, the details for MX61 and M24X are given

here.

(a) Let
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TV = M167/2349023 = 79638304766856507377778616296087448490695649,

a number of 44 digits. TV is a pseudoprime base 13.  Also,

TV- 1 =25 • 11 • 37 • 167 • Rx,

where Rx is composite with no factor < 2 • 106.  Further,TV 4- 1 = 2 • 33 • 52 ■

1381 • 3167 • R2, where R2 is composite with no factor < 2 • 106.  Thus,

Fx = 25 • 11 • 37 • 167 = 2175008 > 2 • 106,

sof\ > 106,and

F2 = 2 • 33 • 52 • 1381 • 3167 = 5904396450 > 5 • 109.

Hence, with B = 2 • 106, the inequality in Corollary 11 (b) is satisfied, since B3FXF2

> (2 • 106)3106(5 • 109)2 > 1044 >TV.

The final tests (I)-(IV) required only a few seconds to show TV was prime.  The

single Lucas sequence P = 1,0= 13 was used in (III) and (IV).

(b)  Let

TV=M241/22000409

= 160619474372352289412737508720216839225805656328990879953332340439,

a number of 66 digits. TV is a pseudoprime base 13.  Also, TV -1=2* 241 • 21221 •

Rx and TV 4- 1 = 23 • 32 • 5 • 23 • 643 • 96763 • 4975177 • 17944799 • R2.

ThenFj = 10228522 and F2 = 45993638617007146424985960.  Hence, with B =

21221, TV is prime by Corollary 11 (b).  One Lucas sequence with P = 1,0 = 5 was

used in the final tests in (III) and (IV).

It is worth mentioning that the factorization of 21S7 - 1, along with the factor-

izations of 2109 ± 1 in [4], finish the 3 factorizations that were left incomplete in

Robinson [19] ; in fact, all numbers attempted there (except F8,Fg, . . .) have now

been completely factored.

Several final comments are in order.   The cofactors of F9 and F10, the ninth and

tenth Fermât numbers, have been tested for pseudoprimality, and are both composite.

The tests were run twice with complete agreement in the remainders.

In [4, p. 87], it was stated that "in general nothing but frustration can be

expected to come from an attack on a number of 25 or more digits, even with the

speeds available in modern computers."  In view of the increase in speed of computers

and the developments in factorization methodology (see [13]), a number of 40 digits

can now be factored in about 50 minutes on, say, the IBM 360/91.  Thus, the above

quote should now be changed to read "50 or more digits."

9. Two Other Factorizations. The following "most wanted" Mersenne factoriza-

tions are due to R. Schroeppel at MIT (see [1]), who found them using essentially the

continued fraction method discussed in [13].

2137 - 1 = 32032215596496435569 • 5439042183600204290159,

2149 - 1 =86656268566282183151 • 8235109336690846723986161.
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