Differential-difference properties of hypergeometric polynomials

Author:
Jet Wimp

Journal:
Math. Comp. **29** (1975), 577-581

MSC:
Primary 33A30

DOI:
https://doi.org/10.1090/S0025-5718-1975-0440085-3

MathSciNet review:
0440085

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We develop differential-difference properties of a class of hypergeometric polynomials which are a generalization of the Jacobi polynomials. The formulas are analogous to known formulas for the classical orthogonal polynomials.

**[1]**JET WIMP, "Recursion formulae for hypergeometric functions,"*Math. Comp.*, v. 22, 1968, pp. 363-373. MR**37**#1655. MR**0226065 (37:1655)****[2]**G. N. WATSON, "A reduction formula,"*Proc. Glasgow Math. Assoc.*, v. 2, 1954, pp. 57-61. MR**16**, 356. MR**0064917 (16:356d)****[3]**W. N. BAILEY, "Contiguous hypergeometric functions of the type ,"*Proc. Glasgow Math. Assoc.*, v. 2, 1954, pp. 62-65. MR**16**, 356. MR**0064918 (16:356e)****[4]**A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER & F. G. TRICOMI,*Higher Transcendental Functions*. Vol. 2, McGraw-Hill, New York, 1953, Chapter X. MR**15**, 419.

Retrieve articles in *Mathematics of Computation*
with MSC:
33A30

Retrieve articles in all journals with MSC: 33A30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0440085-3

Keywords:
Recursion formula,
differential-difference properties,
hypergeometric polynomials

Article copyright:
© Copyright 1975
American Mathematical Society