Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The effect of interpolating the coefficients in nonlinear parabolic Galerkin procedures


Authors: Jim Douglas and Todd Dupont
Journal: Math. Comp. 29 (1975), 360-389
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1975-0502033-7
MathSciNet review: 0502033
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Error estimates are derived for a class of Galerkin methods for a quasilinear parabolic equation. In these Galerkin methods, both continuous and discrete in time, the nonlinear coefficient in the differential equation is interpolated into a finite-dimensional function space in order to compute the integrals involved. Asymptotic error estimates of optimal order are produced.


References [Enhancements On Off] (What's this?)

  • [1] S. AGMON, Lectures on Elliptic Boundary Value Problems, Van Nostrand, Princeton, N. J., 1965. MR 31 #2504. MR 0178246 (31:2504)
  • [2] J. H. BRAMBLE, T. DUPONT & V. THOMÉE, "Projection methods for Dirichlet's problem in approximating polygonal domains with boundary-value corrections," Math. Comp., v. 26, 1972, pp. 869-879. MR 0343657 (49:8397)
  • [3] J. H. BRAMBLE & S. R. HILBERT, "Bounds for a class of linear functional with applications to Hermite interpolation," Numer. Math., v. 16, 1970/71, pp. 362-369. MR 44 #7704. MR 0290524 (44:7704)
  • [4] J. H. BRAMBLE & J. E. OSBORN, "Rate of convergence estimates for nonselfadjoint eigenvalue approximations," Math. Comp., v. 27, 1973, pp. 525-549. MR 0366029 (51:2280)
  • [5] J. H. BRAMBLE & A. H. SCHATZ, "Rayleigh-Ritz-Galerkin methods for Dirichlet's problem using subspaces without boundary conditions," Comm. Pure Appl. Math., v. 23, 1970, pp. 653-675. MR 42 #2690. MR 0267788 (42:2690)
  • [6] J. DOUGLAS, JR. & T. DUPONT, "Galerkin methods for parabolic equations," SIAM J. Numer. Anal., v. 7, 1970, pp. 575-626. MR 43 #2863. MR 0277126 (43:2863)
  • [7] J. DOUGLAS, JR. & T. DUPONT, "Galerkin methods for parabolic equations with nonlinear boundary conditions," Numer. Math., v. 20, 1973, pp. 213-237. MR 0319379 (47:7923)
  • [8] J. L. LIONS, Équations Différentielles Opérationnelles et Problèmes aux Limites, Die Grundleheren der math. Wissenschaften, Band 111, Springer-Verlag, Berlin, 1961. MR 27 #3935. MR 0153974 (27:3935)
  • [9] JOACHIM A. NITSCHE, "Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens," Numer. Math., v. 11, 1968, pp. 346-348. MR 38 #1823. MR 0233502 (38:1823)
  • [10] M. H. SCHULTZ, "$ {L^2}$ error bounds for the Rayleigh-Ritz-Galerkin method," SIAM J. Numer. Anal., v. 8, 1971, pp. 737-748. MR 45 #7967. MR 0298918 (45:7967)
  • [11] M. F. WHEELER, "A priori $ {L_2}$ error estimates for Galerkin approximations to parabolic partial differential equations," SIAM J. Numer. Anal., v. 10, 1973, pp. 723-759. MR 0351124 (50:3613)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0502033-7
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society