Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **29** (1975), 648-669

DOI:
https://doi.org/10.1090/S0025-5718-75-99678-7

Full-text PDF

References | Additional Information

**[1]**H. T. DAVIS & V. J. FISHER,*Tables of the Mathematical Functions*, Vol. III, The Principia Press of Trinity University, San Antonio, Tex., 1962, pp. 506-507. MR**26**#364. (See*Math. Comp.*, v. 17, 1963, pp. 459-461, RMT**68**.) MR**0158099 (28:1325b)****[1]**R. C. BOSE & K. R. NAIR, "Partially balanced incomplete block designs,"*Sankhyā*, v. 4, 1939, pp. 337-372.**[2]**R. C. BOSE, W. H. CLATWORTHY & S. S. SHRIKHANDE,*Tables of Partially Balanced Designs with Two Associate Classes*, North Carolina Agricultural Experiment Station Technical Bulletin No. 107, Raleigh, North Carolina, 1954. MR**0063998 (16:209e)****[1]**I. O. ANGELL, "A table of complex cubic fields,"*Bull. London Math. Soc.*, v. 5, 1973, pp. 37-38. MR**0318099 (47:6648)****[2]**H. DAVENPORT & H. HEILBRONN, "On the density of discriminants of cubic fields. II,"*Proc. Roy. Soc. London Ser. A*, v. 322, 1971, pp. 405-420. MR**0491593 (58:10816)****[3]**DANIEL SHANKS & RICHARD SERAFIN, "Quadratic fields with four invariants divisible by 3,"*Math. Comp.*, v. 27, 1973, pp. 183-187; "Corrigenda,"*ibid.*, p. 1012. MR**0330097 (48:8436a)****[4]**DANIEL SHANKS & PETER WEINBERGER, "A quadratic field of prime discriminant requiring three generators for its class group, and related theory,"*Acta Arith.*, v. 21, 1972, pp. 71-87. MR**46**#9003. MR**0309899 (46:9003)****[5]**DANIEL SHANKS, "New types of quadratic fields having three invariants divisible by 3,"*J. Number Theory*, v. 4, 1972, pp. 537-556. MR**47**#1775. MR**0313220 (47:1775)****[6]**F. DIAZ Y DIAZ, "Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1." (To appear.)**[7]**DANIEL SHANKS, "The infrastructure of a real quadratic field and its applications,"*Proceedings of the*1972*Number Theory Conference*, (Univ. of Colorado, Boulder, 1972), pp. 217-224. MR**0389842 (52:10672)****[8]**T. CALLAHAN, "The 3-class groups of non-Galois cubic fields. II,"*Mathematika*, v. 21, 1974, pp. 168-188. MR**0366876 (51:3122)****[9]**DANIEL SHANKS, "Systematic examination of Littlewood's bounds on ,"*Proc. Sympos. Pure Math.*, vol. 24, Amer. Math. Soc., Providence, R. I., 1973, pp. 267-283. MR**0337827 (49:2596)****[10]**MARSHALL HALL, JR.,*Combinatorial Theory*, Blaisdell, Waltham, Mass., 1967, Chapter 10. MR**37**#80. MR**0224481 (37:80)****[1]**C.-E. FRÖBERG, "Kummer's Förmodan,"*Math. Comp.*, v. 29, 1975, p. 331. UMT**5**.**[2]**J. W. S. CASSELS, "On the determination of generalized Gauss sums," Arch. Math. (Brno), v. 5, 1969, pp. 79-84. MR**0294266 (45:3335)****[1]**A. L. HODGKIN & A. F. HUXLEY, "A quantitative description of membrane current and its application to conduction and excitation in nerve,"*J. Physiology*(*London*), v. 117, 1952, pp. 500-544.**[2]**J. RINZEL & J. B. KELLER, "Travelling wave solutions of a nerve conduction equation,"*Biophysical J.*, v. 13, 1973, pp. 1313-1337.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-75-99678-7

Article copyright:
© Copyright 1975
American Mathematical Society