Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 29 (1975), 648669
Fulltext PDF Free Access
References 
Additional Information
 [1]
Tables of the mathematical functions. Vol. II, The Principia
Press of Trinity University, San Antonio, Tex., 1963. MR 0158099
(28 #1325b)
 [1]
R. C. BOSE & K. R. NAIR, "Partially balanced incomplete block designs," Sankhyā, v. 4, 1939, pp. 337372.
 [2]
R.
C. Bose, W.
H. Clatworthy, and S.
S. Shrikhande, Tables of partially balanced designs with two
associate classes, North Carolina Agricultural Experiment Station,
Tech. Bul. No. 107, North Carolina State College, Raleigh, N. C., 1954. MR 0063998
(16,209e)
 [1]
I.
O. Angell, A table of complex cubic fields, Bull. London Math.
Soc. 5 (1973), 37–38. MR 0318099
(47 #6648)
 [2]
H.
Davenport and H.
Heilbronn, On the density of discriminants of cubic fields.
II, Proc. Roy. Soc. London Ser. A 322 (1971),
no. 1551, 405–420. MR 0491593
(58 #10816)
 [3]
Daniel
Shanks and Richard
Serafin, Quadratic fields with four invariants
divisible by 3, Math. Comp. 27 (1973), 183–187. MR 0330097
(48 #8436a), http://dx.doi.org/10.1090/S00255718197303300970
 [4]
Daniel
Shanks and Peter
Weinberger, A quadratic field of prime discriminant requiring three
generators for its class group, and related theory, Acta Arith.
21 (1972), 71–87. MR 0309899
(46 #9003)
 [5]
Daniel
Shanks, New types of quadratic fields having three invariants
divisible by 3, J. Number Theory 4 (1972),
537–556. MR 0313220
(47 #1775)
 [6]
F. DIAZ Y DIAZ, "Sur les corps quadratiques imaginaires dont le 3rang du groupe des classes est supérieur à 1." (To appear.)
 [7]
Daniel
Shanks, The infrastructure of a real quadratic field and its
applications, Proceedings of the Number Theory Conference (Univ.
Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972,
pp. 217–224. MR 0389842
(52 #10672)
 [8]
T.
Callahan, The 3class groups of nonGalois cubic fields. I,
II, Mathematika 21 (1974), 72–89; ibid. 21
(1974), 168–188. MR 0366876
(51 #3122)
 [9]
Daniel
Shanks, Systematic examination of Littlewood’s bounds on
𝐿(1,𝜒), Analytic number theory (Proc. Sympos. Pure
Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math.
Soc., Providence, R.I., 1973, pp. 267–283. MR 0337827
(49 #2596)
 [10]
Marshall
Hall Jr., Combinatorial theory, Blaisdell Publishing Co. Ginn
and Co., Waltham, Mass.Toronto, Ont.London, 1967. MR 0224481
(37 #80)
 [1]
C.E. FRÖBERG, "Kummer's Förmodan," Math. Comp., v. 29, 1975, p. 331. UMT 5.
 [2]
J.
W. S. Cassels, On the determination of generalized Gauss sums,
Arch. Math. (Brno) 5 (1969), 79–84. MR 0294266
(45 #3335)
 [1]
A. L. HODGKIN & A. F. HUXLEY, "A quantitative description of membrane current and its application to conduction and excitation in nerve," J. Physiology (London), v. 117, 1952, pp. 500544.
 [2]
J. RINZEL & J. B. KELLER, "Travelling wave solutions of a nerve conduction equation," Biophysical J., v. 13, 1973, pp. 13131337.
 [1]
 H. T. DAVIS & V. J. FISHER, Tables of the Mathematical Functions, Vol. III, The Principia Press of Trinity University, San Antonio, Tex., 1962, pp. 506507. MR 26 #364. (See Math. Comp., v. 17, 1963, pp. 459461, RMT 68.) MR 0158099 (28:1325b)
 [1]
 R. C. BOSE & K. R. NAIR, "Partially balanced incomplete block designs," Sankhyā, v. 4, 1939, pp. 337372.
 [2]
 R. C. BOSE, W. H. CLATWORTHY & S. S. SHRIKHANDE, Tables of Partially Balanced Designs with Two Associate Classes, North Carolina Agricultural Experiment Station Technical Bulletin No. 107, Raleigh, North Carolina, 1954. MR 0063998 (16:209e)
 [1]
 I. O. ANGELL, "A table of complex cubic fields," Bull. London Math. Soc., v. 5, 1973, pp. 3738. MR 0318099 (47:6648)
 [2]
 H. DAVENPORT & H. HEILBRONN, "On the density of discriminants of cubic fields. II," Proc. Roy. Soc. London Ser. A, v. 322, 1971, pp. 405420. MR 0491593 (58:10816)
 [3]
 DANIEL SHANKS & RICHARD SERAFIN, "Quadratic fields with four invariants divisible by 3," Math. Comp., v. 27, 1973, pp. 183187; "Corrigenda," ibid., p. 1012. MR 0330097 (48:8436a)
 [4]
 DANIEL SHANKS & PETER WEINBERGER, "A quadratic field of prime discriminant requiring three generators for its class group, and related theory," Acta Arith., v. 21, 1972, pp. 7187. MR 46 #9003. MR 0309899 (46:9003)
 [5]
 DANIEL SHANKS, "New types of quadratic fields having three invariants divisible by 3," J. Number Theory, v. 4, 1972, pp. 537556. MR 47 #1775. MR 0313220 (47:1775)
 [6]
 F. DIAZ Y DIAZ, "Sur les corps quadratiques imaginaires dont le 3rang du groupe des classes est supérieur à 1." (To appear.)
 [7]
 DANIEL SHANKS, "The infrastructure of a real quadratic field and its applications," Proceedings of the 1972 Number Theory Conference, (Univ. of Colorado, Boulder, 1972), pp. 217224. MR 0389842 (52:10672)
 [8]
 T. CALLAHAN, "The 3class groups of nonGalois cubic fields. II," Mathematika, v. 21, 1974, pp. 168188. MR 0366876 (51:3122)
 [9]
 DANIEL SHANKS, "Systematic examination of Littlewood's bounds on ," Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R. I., 1973, pp. 267283. MR 0337827 (49:2596)
 [10]
 MARSHALL HALL, JR., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967, Chapter 10. MR 37 #80. MR 0224481 (37:80)
 [1]
 C.E. FRÖBERG, "Kummer's Förmodan," Math. Comp., v. 29, 1975, p. 331. UMT 5.
 [2]
 J. W. S. CASSELS, "On the determination of generalized Gauss sums," Arch. Math. (Brno), v. 5, 1969, pp. 7984. MR 0294266 (45:3335)
 [1]
 A. L. HODGKIN & A. F. HUXLEY, "A quantitative description of membrane current and its application to conduction and excitation in nerve," J. Physiology (London), v. 117, 1952, pp. 500544.
 [2]
 J. RINZEL & J. B. KELLER, "Travelling wave solutions of a nerve conduction equation," Biophysical J., v. 13, 1973, pp. 13131337.
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571875996787
PII:
S 00255718(75)996787
Article copyright:
© Copyright 1975
American Mathematical Society
