Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 29 (1975), 648-669
DOI: https://doi.org/10.1090/S0025-5718-75-99678-7
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. T. DAVIS & V. J. FISHER, Tables of the Mathematical Functions, Vol. III, The Principia Press of Trinity University, San Antonio, Tex., 1962, pp. 506-507. MR 26 #364. (See Math. Comp., v. 17, 1963, pp. 459-461, RMT 68.) MR 0158099 (28:1325b)
  • [1] R. C. BOSE & K. R. NAIR, "Partially balanced incomplete block designs," Sankhyā, v. 4, 1939, pp. 337-372.
  • [2] R. C. BOSE, W. H. CLATWORTHY & S. S. SHRIKHANDE, Tables of Partially Balanced Designs with Two Associate Classes, North Carolina Agricultural Experiment Station Technical Bulletin No. 107, Raleigh, North Carolina, 1954. MR 0063998 (16:209e)
  • [1] I. O. ANGELL, "A table of complex cubic fields," Bull. London Math. Soc., v. 5, 1973, pp. 37-38. MR 0318099 (47:6648)
  • [2] H. DAVENPORT & H. HEILBRONN, "On the density of discriminants of cubic fields. II," Proc. Roy. Soc. London Ser. A, v. 322, 1971, pp. 405-420. MR 0491593 (58:10816)
  • [3] DANIEL SHANKS & RICHARD SERAFIN, "Quadratic fields with four invariants divisible by 3," Math. Comp., v. 27, 1973, pp. 183-187; "Corrigenda," ibid., p. 1012. MR 0330097 (48:8436a)
  • [4] DANIEL SHANKS & PETER WEINBERGER, "A quadratic field of prime discriminant requiring three generators for its class group, and related theory," Acta Arith., v. 21, 1972, pp. 71-87. MR 46 #9003. MR 0309899 (46:9003)
  • [5] DANIEL SHANKS, "New types of quadratic fields having three invariants divisible by 3," J. Number Theory, v. 4, 1972, pp. 537-556. MR 47 #1775. MR 0313220 (47:1775)
  • [6] F. DIAZ Y DIAZ, "Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1." (To appear.)
  • [7] DANIEL SHANKS, "The infrastructure of a real quadratic field and its applications," Proceedings of the 1972 Number Theory Conference, (Univ. of Colorado, Boulder, 1972), pp. 217-224. MR 0389842 (52:10672)
  • [8] T. CALLAHAN, "The 3-class groups of non-Galois cubic fields. II," Mathematika, v. 21, 1974, pp. 168-188. MR 0366876 (51:3122)
  • [9] DANIEL SHANKS, "Systematic examination of Littlewood's bounds on $ L(1,\chi )$," Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R. I., 1973, pp. 267-283. MR 0337827 (49:2596)
  • [10] MARSHALL HALL, JR., Combinatorial Theory, Blaisdell, Waltham, Mass., 1967, Chapter 10. MR 37 #80. MR 0224481 (37:80)
  • [1] C.-E. FRÖBERG, "Kummer's Förmodan," Math. Comp., v. 29, 1975, p. 331. UMT 5.
  • [2] J. W. S. CASSELS, "On the determination of generalized Gauss sums," Arch. Math. (Brno), v. 5, 1969, pp. 79-84. MR 0294266 (45:3335)
  • [1] A. L. HODGKIN & A. F. HUXLEY, "A quantitative description of membrane current and its application to conduction and excitation in nerve," J. Physiology (London), v. 117, 1952, pp. 500-544.
  • [2] J. RINZEL & J. B. KELLER, "Travelling wave solutions of a nerve conduction equation," Biophysical J., v. 13, 1973, pp. 1313-1337.


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-75-99678-7
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society