Reviews and Descriptions of Tables and Books

Journal:
Math. Comp. **29** (1975), 648-669

DOI:
https://doi.org/10.1090/S0025-5718-75-99678-7

Full-text PDF

References | Additional Information

**[1]***Tables of the mathematical functions. Vol. II*, The Principia Press of Trinity University, San Antonio, Tex., 1963. MR**0158099****[1]**R. C. BOSE & K. R. NAIR, "Partially balanced incomplete block designs,"*Sankhyā*, v. 4, 1939, pp. 337-372.**[2]**R. C. Bose, W. H. Clatworthy, and S. S. Shrikhande,*Tables of partially balanced designs with two associate classes*, North Carolina Agricultural Experiment Station, Tech. Bul. No. 107, North Carolina State College, Raleigh, N. C., 1954. MR**0063998****[1]**I. O. Angell,*A table of complex cubic fields*, Bull. London Math. Soc.**5**(1973), 37–38. MR**0318099**, https://doi.org/10.1112/blms/5.1.37**[2]**H. Davenport and H. Heilbronn,*On the density of discriminants of cubic fields. II*, Proc. Roy. Soc. London Ser. A**322**(1971), no. 1551, 405–420. MR**0491593**, https://doi.org/10.1098/rspa.1971.0075**[3]**Daniel Shanks and Richard Serafin,*Quadratic fields with four invariants divisible by 3*, Math. Comp.**27**(1973), 183–187. MR**0330097**, https://doi.org/10.1090/S0025-5718-1973-0330097-0**[4]**Daniel Shanks and Peter Weinberger,*A quadratic field of prime discriminant requiring three generators for its class group, and related theory*, Acta Arith.**21**(1972), 71–87. MR**0309899**, https://doi.org/10.4064/aa-21-1-71-87**[5]**Daniel Shanks,*New types of quadratic fields having three invariants divisible by 3*, J. Number Theory**4**(1972), 537–556. MR**0313220**, https://doi.org/10.1016/0022-314X(72)90027-3**[6]**F. DIAZ Y DIAZ, "Sur les corps quadratiques imaginaires dont le 3-rang du groupe des classes est supérieur à 1." (To appear.)**[7]**Daniel Shanks,*The infrastructure of a real quadratic field and its applications*, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 217–224. MR**0389842****[8]**T. Callahan,*The 3-class groups of non-Galois cubic fields. I, II*, Mathematika**21**(1974), 72–89; ibid. 21 (1974), 168–188. MR**0366876**, https://doi.org/10.1112/S0025579300005805**[9]**Daniel Shanks,*Systematic examination of Littlewood’s bounds on 𝐿(1,𝜒)*, Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) Amer. Math. Soc., Providence, R.I., 1973, pp. 267–283. MR**0337827****[10]**Marshall Hall Jr.,*Combinatorial theory*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1967. MR**0224481****[1]**C.-E. FRÖBERG, "Kummer's Förmodan,"*Math. Comp.*, v. 29, 1975, p. 331. UMT**5**.**[2]**J. W. S. Cassels,*On the determination of generalized Gauss sums*, Arch. Math. (Brno)**5**(1969), 79–84. MR**0294266****[1]**A. L. HODGKIN & A. F. HUXLEY, "A quantitative description of membrane current and its application to conduction and excitation in nerve,"*J. Physiology*(*London*), v. 117, 1952, pp. 500-544.**[2]**J. RINZEL & J. B. KELLER, "Travelling wave solutions of a nerve conduction equation,"*Biophysical J.*, v. 13, 1973, pp. 1313-1337.

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-75-99678-7

Article copyright:
© Copyright 1975
American Mathematical Society