A partition formula for the integer coefficients of the theta function nome

Authors:
Helaman Rolfe Pratt Ferguson, Dale E. Nielsen and Grant Cook

Journal:
Math. Comp. **29** (1975), 851-855

MSC:
Primary 33A25

DOI:
https://doi.org/10.1090/S0025-5718-1975-0367322-8

MathSciNet review:
0367322

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In elliptic function theory, the nome *q* can be given as a power series in with integer coefficients, . Heretofore, the first 14 coefficients were calculated with considerable difficulty. In this paper, an explicit and general formula involving partitions is given for all the . A table of the first 59 of these integers is given. The table is of number-theoretical interest as well as useful for calculating complete and incomplete elliptic integrals.

**[1]**E. T. WHITTAKER & G. N. WATSON,*A Course of Modem Analysis*, 4th ed., Cambridge Univ. Press, New York, 1927, Sect. 21.8, pp. 485-486.**[2]**Eugene Jahnke and Fritz Emde,*Tables of Functions with Formulae and Curves*, Dover Publications, New York, N. Y., 1945. 4th ed. MR**0015900****[3]**L. M. Milne-Thomson,*Jacobian elliptic function tables. A guide to practical computation with elliptic functions and integrals together with tables of 𝑠𝑛𝑢, 𝑐𝑛𝑢, 𝑑𝑛𝑢, 𝑍(𝑢)*, Dover Publications, Inc., New York, N. Y., 1950. MR**0048143****[4]**Einar Hille,*Analytic function theory. Vol. II*, Introductions to Higher Mathematics, Ginn and Co., Boston, Mass.-New York-Toronto, Ont., 1962. MR**0201608****[5]**I. S. GRADŠTEĬN & I. M. RYŽIK,*Tables of Integrals, Series and Products*, 4th ed., Fizmatgiz, Moscow, 1963; English transl., Academic Press, New York, 1965, pp. 921-925. MR**28**#5198;**33**#5952.**[6]**A. WEIERSTRASS, "Zur Theorie der Elliptischen Funktionen,"*Werke*, v. 2, 1895, pp. 275-276.**[7]**L. M. MILNE-THOMSON, "Ten decimal table of the nome*q*,"*J. London Math. Soc.*, v. 5, 1930, pp. 148-149.**[8]**A. N. Lowan, G. Blanch, and W. Horenstein,*On the inversion of the 𝑞-series associated with Jacobian elliptic functions*, Bull. Amer. Math. Soc.**48**(1942), 737–738. MR**0007119**, https://doi.org/10.1090/S0002-9904-1942-07770-6**[9]**L. B. W. Jolley,*Summation of series*, 2nd revised ed. Dover Books on Advanced Mathematics, Dover Publications, Inc., New York, 1961. MR**0134458****[10]**C. E. VAN ORSTRAND, "Reversion of power series,"*Philos. Mag.*, v. 19, 1910, pp. 366-376.**[11]**James McMahon,*On the general term in the reversion of series*, Bull. Amer. Math. Soc.**3**(1894), no. 7, 170–172. MR**1557325**, https://doi.org/10.1090/S0002-9904-1894-00206-7**[12]**H. RADEMACHER, "On the partition function,"*Proc. London Math. Soc.*, v. 43, 1937, pp. 241-254.**[13]**We thank the BYU Scientific Computation Center and their resurrected IBM 7030 (an old STRETCH) for doing the extensive number crunching of which Table II is a distillation.**[14]**Louis M. Rauch,*Some general inversion formulae for analytic functions*, Duke Math. J.**18**(1951), 131–146. MR**0041211**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A25

Retrieve articles in all journals with MSC: 33A25

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0367322-8

Keywords:
Elliptic integrals,
theta functions,
nome,
partitions,
reversion

Article copyright:
© Copyright 1975
American Mathematical Society