Low-order approximations for the normal probability integral and the error function

Author:
David G. Carta

Journal:
Math. Comp. **29** (1975), 856-862

MSC:
Primary 65D20

DOI:
https://doi.org/10.1090/S0025-5718-1975-0368389-3

MathSciNet review:
0368389

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Rational fractions of the form are used to evaluate the function of interest. Polynomials of from third to sixth order are derived which achieve absolute errors ranging from 0.01 to 0.000001 for all (real) positive *x*, and relative errors of from 0.1 to 0.00001 for (real) positive *x* less than 3.1, 4.0, and 5.2. Denominator coefficients are calculated by linearizing the rational fraction about progressively improved nominal solutions and using linear programming to solve the resulting linear minimax problems.

**[1]**D. G. CARTA, "Low-order approximations for real time simulation,"*Record of Proc., The Seventh Annual Simulation Symposium*, Tampa, Florida, March, 1974, pp. 241-252.**[2]**C. HASTINGS,*Approximations for Digital Computers*, Princeton Univ. Press, Princeton, N. J., 1955, pp. 93, 185. MR**16**, 963. MR**0068915 (16:963e)****[3]**J. F. HART, et al.,*Computer Approximations*, Wiley, New York, 1968.**[4]**P. RABINOWITZ, "Applications of linear programming to numerical analysis,"*SIAM Rev.*, v. 10, 1968, pp. 121-159. MR**37**#2397. MR**0226810 (37:2397)****[5]**J. TODD (Editor),*Survey of Numerical Analysis*, McGraw-Hill, New York, 1962, pp. 3-4. MR**24**#B1271. MR**0135221 (24:B1271)****[6]**È. G. BELAGA, "Some problems involved in the calculation of polynomials,"*Dokl. Akad. Nauk SSSR*, v. 123, 1958, pp. 775-777. (Russian) MR**21**#3935. MR**0105192 (21:3935)****[7]**L. A. LJUSTERNIK, et al.,*Mathematical Analysis. Computation of the Elementary Functions*, Fizmatgiz, Moscow, 1963; English transl.,*Handbook for Computing Elementary Functions*, Pergamon Press, Oxford and New York, 1965. MR**28**#1733;**32**#584. MR**0183102 (32:584)****[8]**D. E. KNUTH,*The Art of Computer Programming*. Vol. 2:*Seminumerical Algorithms*, Addison-Wesley, Reading, Mass., 1969. MR**44**#3531. MR**0286318 (44:3531)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20

Retrieve articles in all journals with MSC: 65D20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0368389-3

Article copyright:
© Copyright 1975
American Mathematical Society