Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Cubature formulas of degree nine for symmetric planar regions


Authors: Robert Piessens and Ann Haegemans
Journal: Math. Comp. 29 (1975), 810-815
MSC: Primary 65D30
DOI: https://doi.org/10.1090/S0025-5718-1975-0368393-5
MathSciNet review: 0368393
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A method of constructing 19-point cubature formulas with degree of exactness 9 is given for two-dimensional regions and weight functions which are symmetric in each variable. For some regions, e.g., the square and the circle, these formulas can be reduced to 18-point formulas.


References [Enhancements On Off] (What's this?)

  • [1] P. RABINOWITZ & N. RICHTER, "Perfectly symmetric two-dimensional integration formulas with minimal number of points," Math. Comp., v. 23, 1969, pp. 765-779. MR 41 #2928. MR 0258281 (41:2928)
  • [2] I. P. MYSOVSKIH, "On the construction of cubature formulas with fewest nodes," Dokl. Akad. Nauk SSSR, v. 178, 1968, pp. 1252-1254 = Soviet Math. Dokl., v. 9, 1968, pp. 277-280. MR 36 #7328. MR 0224284 (36:7328)
  • [3] R. FRANKE, "Minimal point cubatures of precision seven for symmetric regions," SIAM J. Numer. Anal., v. 10, 1971, pp. 849-882. MR 0343544 (49:8285)
  • [4] S. HABER, "Numerical evaluation of multiple integrals," SIAM Rev., v. 12, 1970, pp. 481-526. MR 44 #2342. MR 0285119 (44:2342)
  • [5] A. H. STROUD, Approximate Calculation of Multiple Integrals, Prentice-Hall Ser. in Automatic Computation, Prentice-Hall, Englewood Cliffs, N. J., 1971. MR 48 #5348. MR 0327006 (48:5348)
  • [6] A. H. STROUD, "Integration formulas and orthogonal polynomials for two variables," SIAM J. Numer. Anal., v. 6, 1969, pp. 222-229. MR 41 #6400. MR 0261788 (41:6400)
  • [7] J. ALBRECHT, "Formeln zur numerischen Integration über Kreisbereiche," Z. Angew. Math. Mech., v. 40, 1960, pp. 514-517. MR 22 #11514. MR 0120765 (22:11514)
  • [8] A. HAEGEMANS & R. PIESSENS, Tables of Cubature Formulas of Degree Nine for Symmetric Planar Regions. (Report to be published.)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30

Retrieve articles in all journals with MSC: 65D30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0368393-5
Keywords: Approximate integration, cubature formula, degree of exactness, planar region, orthogonal polynomials
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society