On the largest prime divisor of an odd perfect number. II

Authors:
Peter Hagis and Wayne L. McDaniel

Journal:
Math. Comp. **29** (1975), 922-924

MSC:
Primary 10A40

DOI:
https://doi.org/10.1090/S0025-5718-1975-0371804-2

MathSciNet review:
0371804

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved here that every odd perfect number has a prime factor greater than 100110.

**[1]**P. HAGIS, JR. & W. L. McDANIEL, "A proof that every odd perfect number has a prime factor greater than 100110." (Copy deposited in UMT file.)**[2]**P. HAGIS, JR. & W. L. McDANIEL, "On the largest prime divisor of an odd perfect number,"*Math. Comp.*, v. 27, 1973, pp. 955-957. MR**48**#3855. MR**0325508 (48:3855)****[3]**H. J. KANOLD, "Untersuchungen über ungerade vollkommene Zahlen,"*J. Reine Angew. Math.*, v. 183, 1941, pp. 98-109. MR**3**, 268. MR**0006182 (3:268d)****[4]**K. NORTON, "Remarks on the number of factors of an odd perfect number,"*Acta. Arith.*, v. 6, 1960, pp. 365-374. MR**26**#4950. MR**0147434 (26:4950)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A40

Retrieve articles in all journals with MSC: 10A40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0371804-2

Article copyright:
© Copyright 1975
American Mathematical Society