Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the largest prime divisor of an odd perfect number. II


Authors: Peter Hagis and Wayne L. McDaniel
Journal: Math. Comp. 29 (1975), 922-924
MSC: Primary 10A40
DOI: https://doi.org/10.1090/S0025-5718-1975-0371804-2
MathSciNet review: 0371804
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved here that every odd perfect number has a prime factor greater than 100110.


References [Enhancements On Off] (What's this?)

  • [1] P. HAGIS, JR. & W. L. McDANIEL, "A proof that every odd perfect number has a prime factor greater than 100110." (Copy deposited in UMT file.)
  • [2] P. HAGIS, JR. & W. L. McDANIEL, "On the largest prime divisor of an odd perfect number," Math. Comp., v. 27, 1973, pp. 955-957. MR 48 #3855. MR 0325508 (48:3855)
  • [3] H. J. KANOLD, "Untersuchungen über ungerade vollkommene Zahlen," J. Reine Angew. Math., v. 183, 1941, pp. 98-109. MR 3, 268. MR 0006182 (3:268d)
  • [4] K. NORTON, "Remarks on the number of factors of an odd perfect number," Acta. Arith., v. 6, 1960, pp. 365-374. MR 26 #4950. MR 0147434 (26:4950)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10A40

Retrieve articles in all journals with MSC: 10A40


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0371804-2
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society