Polynomial expansions
Authors:
Jerry L. Fields and Mourad E. H. Ismail
Journal:
Math. Comp. 29 (1975), 894902
MSC:
Primary 41A10; Secondary 33A65
MathSciNet review:
0372472
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The expansion of arbitrary power series in various classes of polynomial sets is considered. Some applications are also given.
 [1]
Ralph
P. Boas Jr. and R.
Creighton Buck, Polynomial expansions of analytic functions,
Second printing, corrected. Ergebnisse der Mathematik und ihrer
Grenzgebiete, N.F., Bd. 19, Academic Press, Inc., Publishers, New York;
SpringerVerlag, Berlin, 1964. MR 0162914
(29 #218)
 [2]
J.
W. Brown, On zero type sets of Laguerre polynomials, Duke
Math. J. 35 (1968), 821–823. MR 0234027
(38 #2348)
 [3]
J.
W. Brown, New generating functions for classical
polynomials, Proc. Amer. Math. Soc. 21 (1969), 263–268. MR 0236438
(38 #4734), http://dx.doi.org/10.1090/S00029939196902364388
 [4]
L.
Carlitz, Some generating functions for Laguerre polynomials,
Duke Math. J. 35 (1968), 825–827. MR 0240351
(39 #1700)
 [5]
Jerry
L. Fields and Jet
Wimp, Expansions of hypergeometric functions
in hypergeometric functions., Math. Comp.
15 (1961),
390–395. MR 0125992
(23 #A3289), http://dx.doi.org/10.1090/S00255718196101259923
 [6]
Jerry
L. Fields and Jet
Wimp, Basic series corresponding to a class of hypergeometric
polynomials, Proc. Cambridge Philos. Soc. 59 (1963),
599–605. MR 0150350
(27 #351)
 [7]
Mourad
ElHoussieny Ismail, On obtaining generating functions of Boas and
Buck type for orthogonal polynomials, SIAM J. Math. Anal.
5 (1974), 202–208. MR 0338484
(49 #3248)
 [8]
Y. L. LUKE, The Special Functions and Their Approximations. Vol. 1, Math. in Sci. and Engineering, vol. 53, Academic Press, New York and London, 1969. MR 39 #3039.
 [9]
J.
D. Niblett, Some hypergeometric identities, Pacific J. Math.
2 (1952), 219–225. MR 0047837
(13,940c)
 [10]
Earl
D. Rainville, Special functions, The Macmillan Co., New York,
1960. MR
0107725 (21 #6447)
 [11]
H.
M. Srivastava, Generating functions for Jacobi and
Laguerre polynomials, Proc. Amer. Math.
Soc. 23 (1969),
590–595. MR 0249694
(40 #2935), http://dx.doi.org/10.1090/S00029939196902496947
 [12]
A. VERMA, "A class of expansions of Gfunctions and the Laplace transform," Math. Comp., v. 19, 1965, pp. 664666.
 [13]
Arun
Verma, Some transformations of series with arbitrary terms,
Ist. Lombardo Accad. Sci. Lett. Rend. A 106 (1972),
342–353. MR 0328144
(48 #6486)
 [14]
Arun
Verma, On generating functions of classical
polynomials, Proc. Amer. Math. Soc. 46 (1974), 73–76. MR 0344537
(49 #9276), http://dx.doi.org/10.1090/S00029939197403445377
 [15]
J. WIMP, "Polynomial approximation to integral transforms," Math. Comp., v. 15, 1961, pp. 174178.
 [16]
Jet
Wimp, Polynomial expansions of Bessel
functions and some associated functions, Math.
Comp. 16 (1962),
446–458. MR 0148956
(26 #6452), http://dx.doi.org/10.1090/S00255718196201489563
 [17]
David
Zeitlin, A new class of generating functions
for hypergeometric polynomials., Proc. Amer.
Math. Soc. 25
(1970), 405–412. MR 0264123
(41 #8719), http://dx.doi.org/10.1090/S00029939197002641233
 [1]
 R. P. BOAS, JR. & R. C. BUCK, Polynomial Expansions of Analytic Functions, 2nd rev. ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 19, Academic Press, New York; SpringerVerlag, Berlin, 1964. MR 29 #218. MR 0162914 (29:218)
 [2]
 J. W. BROWN, "On zero type sets of Laguerre polynomials," Duke Math. J., v. 35, 1968, pp. 821823. MR 38 #2348. MR 0234027 (38:2348)
 [3]
 J. W. BROWN, "New generating functions for classical polynomials," Proc. Amer. Math. Soc., v. 21, 1969, pp. 263268. MR 38 #4734. MR 0236438 (38:4734)
 [4]
 L. CARLITZ, "Some generating functions for Laguerre polynomials," Duke Math. J., v. 35, 1968, pp. 825827. MR 39 #1700. MR 0240351 (39:1700)
 [5]
 J. L. FIELDS & J. WIMP, "Expansions of hypergeometric functions in hypergeometric functions," Math. Comp., v. 15, 1961, pp. 390395. MR 23 #A3289. MR 0125992 (23:A3289)
 [6]
 J. L. FIELDS & J. WIMP, "Basic series corresponding to a class of hypergeometric polynomials," Proc. Cambridge Philos. Soc., v. 59, 1963, pp. 599605. MR 27 #351. MR 0150350 (27:351)
 [7]
 M. E. H. ISMAIL, "On obtaining generating functions of Boas and Buck type for orthogonal polynomials," SIAM J. Math. Anal., v. 5, 1974. MR 0338484 (49:3248)
 [8]
 Y. L. LUKE, The Special Functions and Their Approximations. Vol. 1, Math. in Sci. and Engineering, vol. 53, Academic Press, New York and London, 1969. MR 39 #3039.
 [9]
 J. D. NIBLETT, "Some hypergeometric identities," Pacific J. Math., v. 2, 1952, pp. 219225. MR 13, 940. MR 0047837 (13:940c)
 [10]
 E. D. RAINVILLE, Special Functions, Macmillan, New York, 1965. MR 0107725 (21:6447)
 [11]
 H. M. SRIVASTAVA, "Generating functions for Jacobi and Laguerre polynomials," Proc. Amer. Math. Soc., v. 23, 1969, pp. 590595. MR 40 #2935. MR 0249694 (40:2935)
 [12]
 A. VERMA, "A class of expansions of Gfunctions and the Laplace transform," Math. Comp., v. 19, 1965, pp. 664666.
 [13]
 A. VERMA, "Some transformations of series with arbitrary terms," Ist. Lombardo Accad. Sci. Lett. Rend. A, v. 106, 1972, pp. 342353. MR 0328144 (48:6486)
 [14]
 A. VERMA, "On generating functions of classical polynomials," Proc. Amer. Math. Soc., v. 46, 1974, pp. 7376. MR 0344537 (49:9276)
 [15]
 J. WIMP, "Polynomial approximation to integral transforms," Math. Comp., v. 15, 1961, pp. 174178.
 [16]
 J. WIMP, "Polynomial expansions of Bessel functions and some associated functions," Math Comp., v. 16, 1962, pp. 446458. MR 26 #6452. MR 0148956 (26:6452)
 [17]
 D. ZEITLIN, "A new class of generating functions for hypergeometric polynomials," Proc. Amer. Math. Soc., v. 25, 1970, pp. 405412. MR 41 #8719. MR 0264123 (41:8719)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
41A10,
33A65
Retrieve articles in all journals
with MSC:
41A10,
33A65
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503724726
PII:
S 00255718(1975)03724726
Keywords:
Polynomial expansions,
hypergeometric functions
Article copyright:
© Copyright 1975
American Mathematical Society
