Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An equation of Mordell


Author: Andrew Bremner
Journal: Math. Comp. 29 (1975), 925-928
MSC: Primary 10B10
DOI: https://doi.org/10.1090/S0025-5718-1975-0374019-7
MathSciNet review: 0374019
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: All integer solutions of the Diophantine equation $ 6{y^2} = (x + 1)({x^2} - x + 6)$ are found.


References [Enhancements On Off] (What's this?)

  • [1] L. J. MORDELL, Diophantine Equations, Pure and Appl. Math., vol. 30, Academic Press, London and New York, 1969, p. 259. MR 40 #2600. MR 0249355 (40:2600)
  • [2] W. LJUNGGREN, "Einige Eigenschaften der Einheiten reeller quadratischer und reinbiquadratischer Zahlkorper," Oslo Vid.-Akad. Skrifter, v. 1, 1936, no. 12.
  • [3] J.W. S. CASSELS, "Integral points on certain elliptic curves," Proc. London Math. Soc. (3), v. 14A, 1965, pp. 55-57. MR 31 #2200. MR 0177942 (31:2200)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10B10

Retrieve articles in all journals with MSC: 10B10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0374019-7
Keywords: Diophantine equation
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society