Factoring multivariate polynomials over the integers
Authors:
Paul S. Wang and Linda Preiss Rothschild
Journal:
Math. Comp. 29 (1975), 935950
MSC:
Primary 10M05; Secondary 68A10
MathSciNet review:
0396471
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An algorithm for the irreducible factorization of any multivariate polynomial over the integers is given. It is much faster than the classical method ascribed to Kronecker. The algorithm begins by making substitutions for all but one of the variables with selected integers, giving a polynomial in just one variable. This univariate polynomial is then factored by a known method, which uses an algorithm of Berlekamp for factoring univariate polynomials over finite fields. The multivariate factors are constructed from the univariate ones by a kind of Hensel algorithm. The procedure has been implemented in the algebraic manipulation systems MACSYMA and SCRATCHPAD. A number of machine examples with timing are included.
 [1]
E.
R. Berlekamp, Factoring polynomials over finite fields, Bell
System Tech. J. 46 (1967), 1853–1859. MR 0219231
(36 #2314)
 [2]
E.
R. Berlekamp, Factoring polynomials over large
finite fields, Math. Comp. 24 (1970), 713–735. MR 0276200
(43 #1948), http://dx.doi.org/10.1090/S0025571819700276200X
 [3]
W.
S. Brown, On Euclid’s algorithm and the computation of
polynomial greatest common divisors, J. Assoc. Comput. Mach.
18 (1971), 478–504. MR 0307450
(46 #6570)
 [4]
G. E. COLLINS, SAC1 Modular Arithmetic System, University of Wisconsin Technical Report No. 10, June 1969.
 [5]
A.
O. Gel′fond, Transcendental and algebraic numbers,
Translated from the first Russian edition by Leo F. Boron, Dover
Publications, Inc., New York, 1960. MR 0111736
(22 #2598)
 [6]
Donald
E. Knuth, The art of computer programming. Vol. 2: Seminumerical
algorithms, AddisonWesley Publishing Co., Reading, Mass.LondonDon
Mills, Ont, 1969. MR 0286318
(44 #3531)
 [7]
J. McCARTHY et al., LISP 1.5 Programmer's Manual, M.I.T. Press, Cambridge, Mass., 1963.
 [8]
J. MOSES & D. Y. Y. YUN, "The EZ GCD algorithm," Proceedings of ACM Annual Conference, August 1973.
 [9]
D. R. MUSSER, Algorithms for Polynomial Factorization, Ph. D. Thesis, Computer Science Department, The University of Wisconsin, Madison, Wis., 1971.
 [10]
B. L. VAN DER WAERDEN, Modern Algebra. Vol. 1, Springer, Berlin, 1930; English transl., Ungar, New York, 1949. MR 10, 587.
 [11]
D. Y. Y. YUN, The Hensel Lemma in Algebraic Manipulation, Ph. D. Thesis, Department of Mathematics, M.I.T., Nov. 1973 (also Project MAC TR138, November 1974).
 [12]
Hans
Zassenhaus, On Hensel factorization. I, J. Number Theory
1 (1969), 291–311. MR 0242793
(39 #4120)
 [13]
MACSYMA Reference Manual, the MATHLAB group, Project MAC, M.I.T., Cambridge, Mass., Sept. 1974.
 [1]
 E. R. BERLEKAMP, "Factoring polynomials over finite fields," Bell System Tech. J., v. 46, 1967, pp. 18531859. MR 36 #2314. MR 0219231 (36:2314)
 [2]
 E. R. BERLEKAMP, "Factoring polynomials over large finite fields," Math. Comp., v. 24, 1970, pp. 713735. MR 43 # 1948. MR 0276200 (43:1948)
 [3]
 W. S. BROWN, "On Euclid's algorithm and the computation of polynomial greatest common divisors," J. Assoc. Comput. Mach., v. 18, 1971, pp. 478504. MR 46 #6570. MR 0307450 (46:6570)
 [4]
 G. E. COLLINS, SAC1 Modular Arithmetic System, University of Wisconsin Technical Report No. 10, June 1969.
 [5]
 A. O. GEL'FOND, Transcendental and Algebraic Numbers, GITTL, Moscow, 1952; English transl., Dover, New York, 1960. MR 15, 292; 22 #2598. MR 0111736 (22:2598)
 [6]
 D. E. KNUTH, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, AddisonWesley, Reading, Mass., 1969. MR 44 #3531. MR 0286318 (44:3531)
 [7]
 J. McCARTHY et al., LISP 1.5 Programmer's Manual, M.I.T. Press, Cambridge, Mass., 1963.
 [8]
 J. MOSES & D. Y. Y. YUN, "The EZ GCD algorithm," Proceedings of ACM Annual Conference, August 1973.
 [9]
 D. R. MUSSER, Algorithms for Polynomial Factorization, Ph. D. Thesis, Computer Science Department, The University of Wisconsin, Madison, Wis., 1971.
 [10]
 B. L. VAN DER WAERDEN, Modern Algebra. Vol. 1, Springer, Berlin, 1930; English transl., Ungar, New York, 1949. MR 10, 587.
 [11]
 D. Y. Y. YUN, The Hensel Lemma in Algebraic Manipulation, Ph. D. Thesis, Department of Mathematics, M.I.T., Nov. 1973 (also Project MAC TR138, November 1974).
 [12]
 H. ZASSENHAUS, "On Hensel factorization. I," J. Number Theory, v. 1, 1969, pp. 291311. MR 39 #4120. MR 0242793 (39:4120)
 [13]
 MACSYMA Reference Manual, the MATHLAB group, Project MAC, M.I.T., Cambridge, Mass., Sept. 1974.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10M05,
68A10
Retrieve articles in all journals
with MSC:
10M05,
68A10
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503964713
PII:
S 00255718(1975)03964713
Article copyright:
© Copyright 1975
American Mathematical Society
