Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Maximum-norm interior estimates for Ritz-Galerkin methods


Authors: James H. Bramble, Joachim A. Nitsche and Alfred H. Schatz
Journal: Math. Comp. 29 (1975), 677-688
MSC: Primary 65N15
DOI: https://doi.org/10.1090/S0025-5718-1975-0398120-7
MathSciNet review: 0398120
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we obtain, by simple means, interior maximum-norm estimates for a class of Ritz-Galerkin methods used for approximating solutions of second order elliptic boundary value problems in $ {{\mathbf{R}}^N}$. The estimates are proved when the approximating subspaces are any of a large class of piecewise polynomial subspaces which we assume here to be defined on a uniform mesh on the interior domain. Optimal rates of convergence are obtained.


References [Enhancements On Off] (What's this?)

  • [1] S. AGMON, Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Studies, no. 2, Van Nostrand, Princeton, N. J., 1965. MR 31 #2504. MR 0178246 (31:2504)
  • [2] I. BABUŠKA, The Finite Element Method with Lagrangian Multipliers, Tech. Note BN-724, Institute for Fluid Dynamics and Applied Math., University of Maryland, 1972.
  • [3] J. H. BRAMBLE & S. R. HILBERT, "Bounds for a class of linear functionals with applications to Hermite interpolation," Numer. Math., v. 16, 1970/71, pp. 362-369. MR 44 #7704. MR 0290524 (44:7704)
  • [4] J. H. BRAMBLE & J. E. OSBORN, "Rate of convergence estimates for nonselfadjoint eigenvalue approximations," Math. Comp., v. 27, 1973, pp. 525-549. MR 0366029 (51:2280)
  • [5] J. H. BRAMBLE & M. ZLÁMAL, "Triangular elements in the finite element method," Math. Comp., v. 24, 1970, pp. 809-820. MR 43 #8250. MR 0282540 (43:8250)
  • [6] J. DESCLOUX, "Interior regularity for Galerkin finite element approximations of elliptic partial differential equations." (Preprint.)
  • [7] J. DOUGLAS, JR., T. DUPONT & L. WAHLBIN, "Optimal $ {L_\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems," Math. Comp., v. 29, 1975, pp. 475-483. MR 0371077 (51:7298)
  • [8] T. J. KING, "New error bounds for the penalty method and extrapolation," Math. Comp. (To appear.) MR 0400742 (53:4572)
  • [9] J. L. LIONS & E. MAGENES, Problèmes aux limites non homogènes et application. Vol. I, Travaux et Recherches Mathématique, no. 17, Dunod, Paris, 1968. MR 40 #512. MR 0247243 (40:512)
  • [10] J. A. NITSCHE, "Über ein Variationsprinzip zur Lösung von Dirichlet Problemen bei Verwendung von Teilräumen die keinen Randbedingunen unterworfen sind," Abh. Math. Sem. Univ. Hamburg, v. 36, 1971, pp. 9-15. MR 0341903 (49:6649)
  • [11] J. A. NITSCHE, "A projection method for Dirichlet-problems using subspaces with nearly zero boundary conditions," The Mathematical Foundation of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (Editor), Academic Press, New York, 1972, pp. 603-627. MR 0426456 (54:14399)
  • [12] J. A. NITSCHE, "Umkehrsätze für Spline-Approximationen," Compositio Math., v. 21, 1969, pp. 400-416. MR 41 #4074. MR 0259436 (41:4074)
  • [13] J. A. NITSCHE, "Interior error estimates for projection method," Equadiff 3, Brno, Czechoslovakia, 1972, pp. 233-239. MR 0359361 (50:11815)
  • [14] J. A. NITSCHE & A. H. SCHATZ, "On local approximation properties of $ {L_2}$ projections on spline subspaces," Applicable Anal., v. 2, 1972, pp. 161-168. MR 0397268 (53:1127)
  • [15] J. A. NITSCHE & A. H. SCHATZ, "Interior estimates for Ritz-Galerkin methods," Math. Comp., v. 28, 1974, pp. 937-958. MR 0373325 (51:9525)
  • [16] I. J. SCHOENBERG, Approximation with Special Emphasis on Spline Functions, Academic Press, New York and London, 1969. MR 40 #4638. MR 0251408 (40:4638)
  • [17] S. L. SOBOLEV, "Sur l'évaluation de quelques sommes pour une fonction définie sur un réseau," Izv. Akad. Nauk SSSR Ser. Mat., v. 4, 1940, pp. 5-16. (Russian) MR 1, 298. MR 0001788 (1:298d)
  • [18] V. THOMÉE & B. WESTERGREN, "Elliptic difference equations and interior regularity," Numer. Math., v. 11, 1968, pp. 196-210. MR 36 #7347. MR 0224303 (36:7347)
  • [19] V. THOMÉE, "Discrete interior Schauder estimates for elliptic difference operators," SIAM J. Numer. Anal., v. 5, 1968, pp. 626-645. MR 38 #6781. MR 0238505 (38:6781)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N15

Retrieve articles in all journals with MSC: 65N15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0398120-7
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society