Zeros of adic functions
Author:
Samuel S. Wagstaff
Journal:
Math. Comp. 29 (1975), 11381143
MSC:
Primary 12B30
MathSciNet review:
0387253
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The padic coefficients and zeros of certain formal power series defined by Iwasawa have been calculated modulo various powers of p. Using these results and Iwasawa's formula for the padic Lfunction of Kubota and Leopoldt, several padic places of the zero of were computed for the irregular primes .
 [1]
A.
I. Borevich and I.
R. Shafarevich, Number theory, Translated from the Russian by
Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press,
New York, 1966. MR 0195803
(33 #4001)
 [2]
Kenkichi
Iwasawa, On some modules in the theory of cyclotomic fields,
J. Math. Soc. Japan 16 (1964), 42–82. MR 0215811
(35 #6646)
 [3]
Kenkichi
Iwasawa, On 𝑝adic 𝐿functions, Ann. of Math.
(2) 89 (1969), 198–205. MR 0269627
(42 #4522)
 [4]
Kenkichi
Iwasawa and Charles
C. Sims, Computation of invariants in the theory of cyclotomic
fields, J. Math. Soc. Japan 18 (1966), 86–96.
MR
0202700 (34 #2560)
 [5]
Wells
Johnson, Irregular primes and cyclotomic
invariants, Math. Comp. 29 (1975), 113–120.
Collection of articles dedicated to Derrick Henry Lehmer on the occasion of
his seventieth birthday. MR 0376606
(51 #12781), http://dx.doi.org/10.1090/S00255718197503766069
 [6]
V.
V. Kobelev, A proof of Fermat’s theorem for all prime
ewponents less that 5500., Dokl. Akad. Nauk SSSR 190
(1970), 767–768 (Russian). MR 0258717
(41 #3363)
 [7]
Tomio
Kubota and HeinrichWolfgang
Leopoldt, Eine 𝑝adische Theorie der Zetawerte. I.
Einführung der 𝑝adischen Dirichletschen
𝐿Funktionen, J. Reine Angew. Math. 214/215
(1964), 328–339 (German). MR 0163900
(29 #1199)
 [8]
D.
H. Lehmer, Emma
Lehmer, and H.
S. Vandiver, An application of highspeed computing to
Fermat’s last theorem, Proc. Nat. Acad. Sci. U. S. A.
40 (1954), 25–33. MR 0061128
(15,778f)
 [9]
J.
L. Selfridge, C.
A. Nicol, and H.
S. Vandiver, Proof of Fermat’s last theorem for all prime
exponents less than 4002, Proc. Nat. Acad. Sci. U.S.A.
41 (1955), 970–973. MR 0072892
(17,348a)
 [10]
J. L. SELFRIDGE & B. W. POLLACK, "Fermat's last theorem is true for any exponent up to 25,000," Notices Amer. Math. Soc., v. 11, 1964, p. 97. Abstract #608138.
 [11]
H.
S. Vandiver, Examination of methods of attack on the second case of
Fermat’s last theorem, Proc. Nat. Acad. Sci. U. S. A.
40 (1954), 732–735. MR 0062758
(16,13f)
 [1]
 Z. I. BOREVICH (BOREVIČ) & I. R. SHAFAREVICH (ŠAFAREVIČ), Number Theory, "Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York, 1966. MR 30 #1080; 33 #4001. MR 0195803 (33:4001)
 [2]
 K. IWASAWA, "On some modules in the theory of cyclotomic fields," J. Math. Soc. Japan, v. 16, 1964, pp. 4282. MR 35 #6646. MR 0215811 (35:6646)
 [3]
 K. IWASAWA, "On padic Lfunctions," Ann. of Math. (2), v. 89, 1969, pp. 198205. MR 42 #4522. MR 0269627 (42:4522)
 [4]
 K. IWASAWA & C. C. SIMS, "Computation of invariants in the theory of cyclotomic fields," J. Math. Soc. Japan, v. 18, 1966, pp. 8696. MR 34 #2560. MR 0202700 (34:2560)
 [5]
 WELLS JOHNSON, "Irregular primes and cyclotomic invariants," Math. Comp., v. 29, 1975, pp. 113120. MR 0376606 (51:12781)
 [6]
 V. V. KOBELEV, "Proof of Fermat's last theorem for all prime exponents less than 5500," Dokl. Akad. Nauk SSSR, v. 190, 1970, pp. 767768 = Soviet Math. Dokl., v. 11, 1970, pp. 188190. MR 41 #3363. MR 0258717 (41:3363)
 [7]
 T. KUBOTA & H. W. LEOPOLDT, "Eine padische Theorie der Zetawerte," J. Reine Angew. Math., v. 214/215, 1964, pp. 328339. MR 29 #1199. MR 0163900 (29:1199)
 [8]
 D. H. LEHMER, E. LEHMER & H. S. VANDIVER, "An application of highspeed computing to Fermat's last theorem," Proc. Nat. Acad. Sci. U.S.A., v. 40, 1954, pp. 2533. MR 15, 778. MR 0061128 (15:778f)
 [9]
 J. L. SELFRIDGE, C. A. NICOL & H. S. VANDIVER, "Proof of Fermat's last theorem for all prime exponents less than 4002," Proc. Nat. Acad. Sci. U.S.A., v. 41, 1955, pp. 970973. MR 17, 348. MR 0072892 (17:348a)
 [10]
 J. L. SELFRIDGE & B. W. POLLACK, "Fermat's last theorem is true for any exponent up to 25,000," Notices Amer. Math. Soc., v. 11, 1964, p. 97. Abstract #608138.
 [11]
 H. S. VANDIVER, "Examination of methods of attack on the second case of Fermat's last theorem," Proc. Nat. Acad. Sci. U.S.A., v. 40, 1954, pp. 732735. MR 16, 13. MR 0062758 (16:13f)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
12B30
Retrieve articles in all journals
with MSC:
12B30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503872537
PII:
S 00255718(1975)03872537
Keywords:
padic Lfunctions,
cyclotomic field,
irregular primes
Article copyright:
© Copyright 1975 American Mathematical Society
