Zeros of -adic -functions

Author:
Samuel S. Wagstaff

Journal:
Math. Comp. **29** (1975), 1138-1143

MSC:
Primary 12B30

DOI:
https://doi.org/10.1090/S0025-5718-1975-0387253-7

MathSciNet review:
0387253

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The *p*-adic coefficients and zeros of certain formal power series defined by Iwasawa have been calculated modulo various powers of *p*. Using these results and Iwasawa's formula for the *p*-adic *L*-function of Kubota and Leopoldt, several *p*-adic places of the zero of were computed for the irregular primes .

**[1]**A. I. Borevich and I. R. Shafarevich,*Number theory*, Translated from the Russian by Newcomb Greenleaf. Pure and Applied Mathematics, Vol. 20, Academic Press, New York-London, 1966. MR**0195803****[2]**Kenkichi Iwasawa,*On some modules in the theory of cyclotomic fields*, J. Math. Soc. Japan**16**(1964), 42–82. MR**0215811**, https://doi.org/10.2969/jmsj/01610042**[3]**Kenkichi Iwasawa,*On 𝑝-adic 𝐿-functions*, Ann. of Math. (2)**89**(1969), 198–205. MR**0269627**, https://doi.org/10.2307/1970817**[4]**Kenkichi Iwasawa and Charles C. Sims,*Computation of invariants in the theory of cyclotomic fields*, J. Math. Soc. Japan**18**(1966), 86–96. MR**0202700**, https://doi.org/10.2969/jmsj/01810086**[5]**Wells Johnson,*Irregular primes and cyclotomic invariants*, Math. Comp.**29**(1975), 113–120. Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday. MR**0376606**, https://doi.org/10.1090/S0025-5718-1975-0376606-9**[6]**V. V. Kobelev,*A proof of Fermat’s theorem for all prime ewponents less that 5500.*, Dokl. Akad. Nauk SSSR**190**(1970), 767–768 (Russian). MR**0258717****[7]**Tomio Kubota and Heinrich-Wolfgang Leopoldt,*Eine 𝑝-adische Theorie der Zetawerte. I. Einführung der 𝑝-adischen Dirichletschen 𝐿-Funktionen*, J. Reine Angew. Math.**214/215**(1964), 328–339 (German). MR**0163900****[8]**D. H. Lehmer, Emma Lehmer, and H. S. Vandiver,*An application of high-speed computing to Fermat’s last theorem*, Proc. Nat. Acad. Sci. U. S. A.**40**(1954), 25–33. MR**0061128****[9]**J. L. Selfridge, C. A. Nicol, and H. S. Vandiver,*Proof of Fermat’s last theorem for all prime exponents less than 4002*, Proc. Nat. Acad. Sci. U.S.A.**41**(1955), 970–973. MR**0072892****[10]**J. L. SELFRIDGE & B. W. POLLACK, "Fermat's last theorem is true for any exponent up to 25,000,"*Notices Amer. Math. Soc.*, v. 11, 1964, p. 97. Abstract #608-138.**[11]**H. S. Vandiver,*Examination of methods of attack on the second case of Fermat’s last theorem*, Proc. Nat. Acad. Sci. U. S. A.**40**(1954), 732–735. MR**0062758**

Retrieve articles in *Mathematics of Computation*
with MSC:
12B30

Retrieve articles in all journals with MSC: 12B30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0387253-7

Keywords:
*p*-adic *L*-functions,
cyclotomic field,
irregular primes

Article copyright:
© Copyright 1975
American Mathematical Society