On generalized Gaussian quadrature

Authors:
Yudell L. Luke, Bing Yuan Ting and Marilyn J. Kemp

Journal:
Math. Comp. **29** (1975), 1083-1093

MSC:
Primary 65D30

DOI:
https://doi.org/10.1090/S0025-5718-1975-0388740-8

MathSciNet review:
0388740

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general interpolation formula is derived such that when it is multiplied by a weight function and integrated, the result becomes a generalized Gaussian quadrature scheme which allows for an arbitrary number of preassigned nodes. The errors in the interpolation and quadrature formulas are studied. All of this generalizes previous results of the first-named author where no preassigned nodes were permitted.

**[1]**Yudell L. Luke,*On the error in a certain interpolation formula and in the Gaussian integration formula*, J. Austral. Math. Soc.**19**(1975), 196–209. MR**0386232****[2]**Vladimir Ivanovich Krylov,*Approximate calculation of integrals*, Translated by Arthur H. Stroud, The Macmillan Co., New York-London, 1962, 1962. MR**0144464****[3]**W. Barrett,*Convergence properties of Gaussian quadrature formulae*, Comput. J.**3**(1960/1961), 272–277. MR**0128073**, https://doi.org/10.1093/comjnl/3.4.272**[4]**John McNamee,*Error-bounds for the evaluation of integrals by the Euler-Maclaurin formula and by Gauss-type formulae*, Math. Comp.**18**(1964), 368–381. MR**0185804**, https://doi.org/10.1090/S0025-5718-1964-0185804-1**[5]**M. M. Chawla and M. K. Jain,*Error estimates for Gauss quadrature formulas for analytic functions*, Math. Comp.**22**(1968), 82–90. MR**0223093**, https://doi.org/10.1090/S0025-5718-1968-0223093-3**[6]**M. M. Chawla and M. K. Jain,*Asymptotic error estimates for the Gauss quadrature formula*, Math. Comp.**22**(1968), 91–97. MR**0223094**, https://doi.org/10.1090/S0025-5718-1968-0223094-5**[7]**M. M. Chawla,*Asymptotic Gauss quadrature errors as Fourier coefficients of the integrand*, J. Austral. Math. Soc.**12**(1971), 315–322. MR**0292297****[8]**N. K. Basu,*Errors in the representation of a function by Chebyshev polynomials of the second kind*, SIAM J. Numer. Anal.**10**(1973), 485–488. MR**0329196**, https://doi.org/10.1137/0710043**[9]**J. D. Donaldson and David Elliott,*A unified approach to quadrature rules with asymptotic estimates of their remainders*, SIAM J. Numer. Anal.**9**(1972), 573–602. MR**0317522**, https://doi.org/10.1137/0709051**[10]**P. D. Tuan and David Elliott,*Coefficients in series expansions for certain classes of functions*, Math. Comp.**26**(1972), 213–232. MR**0301440**, https://doi.org/10.1090/S0025-5718-1972-0301440-2**[11]**Y. L. LUKE,*The Special Functions and Their Approximations*. Vols. 1, 2, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969. MR**39**#3039;**40**#2909.**[12]**David Elliott,*The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function*, Math. Comp.**18**(1964), 274–284. MR**0166903**, https://doi.org/10.1090/S0025-5718-1964-0166903-7

Retrieve articles in *Mathematics of Computation*
with MSC:
65D30

Retrieve articles in all journals with MSC: 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0388740-8

Article copyright:
© Copyright 1975
American Mathematical Society