Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On generalized Gaussian quadrature


Authors: Yudell L. Luke, Bing Yuan Ting and Marilyn J. Kemp
Journal: Math. Comp. 29 (1975), 1083-1093
MSC: Primary 65D30
DOI: https://doi.org/10.1090/S0025-5718-1975-0388740-8
MathSciNet review: 0388740
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A general interpolation formula is derived such that when it is multiplied by a weight function and integrated, the result becomes a generalized Gaussian quadrature scheme which allows for an arbitrary number of preassigned nodes. The errors in the interpolation and quadrature formulas are studied. All of this generalizes previous results of the first-named author where no preassigned nodes were permitted.


References [Enhancements On Off] (What's this?)

  • [1] Y. L. LUKE, "On the error in a certain interpolation formula and in the Gaussian integration formula," J. Austral. Math. Soc., v. 19, 1975, pp. 196-210. MR 0386232 (52:7090)
  • [2] V. I. KRYLOV, Approximate Calculation of Integrals, Fizmatgiz, Moscow, 1959; English transl., Macmillan, New York, 1962. MR 22 #2002; 26 #2008. MR 0144464 (26:2008)
  • [3] W. BARRETT, "Properties of Gaussian quadrature formulae," Comput. J., v. 3, 1960/61, pp. 272-277. MR 0128073 (23:B1117)
  • [4] J. McNAMEE, "Error-bounds for the evaluation of integrals by the Euler-Maclaurin formula and by Gauss-type formulae," Math. Comp., v. 18, 1964, pp. 368-381. MR 32 #3264. MR 0185804 (32:3264)
  • [5] M. M. CHAWLA & M. K. JAIN, "Error estimates for Gauss quadrature formulas for analytic functions," Math. Comp., v. 22, 1968, pp. 82-90. MR 36 #6142. MR 0223093 (36:6142)
  • [6] M. M. CHAWLA & M. K. JAIN, "Asymptotic error estimates for the Gauss quadrature formula," Math. Comp., v. 22, 1968, pp. 91-97. MR 36 #6143. MR 0223094 (36:6143)
  • [7] M. M. CHAWLA, "Asymptotic Gauss quadrature errors as Fourier coefficients of the integrand," J. Austral. Math. Soc., v. 12, 1971, pp. 315-322. MR 45 #1384. MR 0292297 (45:1384)
  • [8] N. K. BASU, "Errors in the representation of a function by Chebyshev polynomials of the second kind," SIAM J. Numer. Anal., v. 10, 1973, pp. 485-488. MR 48 #7538. MR 0329196 (48:7538)
  • [9] J. D. DONALDSON & D. ELLIOTT, "A unified approach to quadrature rules with asymptotic estimates of their remainders," SIAM J. Numer. Anal., v. 9, 1972, pp. 573-602. MR 47 #6069. MR 0317522 (47:6069)
  • [10] P. D. TUAN & D. ELLIOTT, "Coefficients in series expansions for certain classes of functions," Math. Comp., v. 26, 1972, pp. 213-232. MR 46 #598. MR 0301440 (46:598)
  • [11] Y. L. LUKE, The Special Functions and Their Approximations. Vols. 1, 2, Math. in Sci. and Engineering, vol. 53, Academic Press, New York, 1969. MR 39 #3039; 40 #2909.
  • [12] D. L. ELLIOTT, "The evaluation and estimation of the coefficients in the Chebyshev series expansion of a function," Math. Comp., v. 18, 1964, pp. 274-284. MR 29 #4176. MR 0166903 (29:4176)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30

Retrieve articles in all journals with MSC: 65D30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0388740-8
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society