Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A comparison of global methods for linear two-point boundary value problems


Authors: R. D. Russell and J. M. Varah
Journal: Math. Comp. 29 (1975), 1007-1019
MSC: Primary 65L10
DOI: https://doi.org/10.1090/S0025-5718-1975-0388788-3
Comment: Math. Comp. 31 (1977), 916-921.
MathSciNet review: 0388788
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Recently there has been a great deal of interest in numerical methods of a global nature for boundary value problems. In this paper we discuss and compare these global methods from a computational point of view, for the case of a single linear two-point boundary value problem.


References [Enhancements On Off] (What's this?)

  • [1] J. H. BRAMBLE & A. H. SCHATZ, "On the numerical solution of elliptic boundary value problems by least squares approximation of the data," Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970), Academic Press, New York, 1971, pp. 107-131. MR 42 #8713. MR 0273837 (42:8713)
  • [2] C. DE BOOR & B. SWARTZ, "Collocation at Gaussian points," SIAM J. Numer. Anal., v. 10, 1973, pp. 582-606. MR 0373328 (51:9528)
  • [3] R. J. HERBOLD, M. H. SCHULTZ & R. S. VARGA, "The effect of quadrature errors in the numerical solution of boundary value problems by variational techniques," Aequationes Math., v. 3, 1969, pp. 247-270. MR 41 #6410. MR 0261798 (41:6410)
  • [4] J. A. NITSCHE, "Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens," Numer. Math., v. 11, 1968, pp. 346-348. MR 38 #1823. MR 0233502 (38:1823)
  • [5] M. H. SCHULTZ, "Quadrature-Galerkin approximations to solutions of elliptic differential equations," Proc. Amer. Math. Soc., v. 33, 1972, pp. 511-515. MR 47 #4467. MR 0315919 (47:4467)
  • [6] M. H. SCHULTZ, Spline Analysis, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR 0362832 (50:15270)
  • [7] G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR 0443377 (56:1747)
  • [8] J. M. VARAH, "On the solution of block-tridiagonal systems arising from certain finite-difference equations," Math. Comp., v. 26, 1972, pp. 859-868. MR 48 #1445. MR 0323087 (48:1445)
  • [9] J. M. VARAH, "A comparison of some numerical methods for two-point boundary value problems," Math. Comp., v. 28, 1974, pp. 743-755. MR 0373300 (51:9500)
  • [10] R. S. VARGA, Functional Analysis and Approximation Theory in Numerical Analysis, Conference Board of the Math. Sci. Regional Conf. Ser. in Appl. Math., no. 3, SIAM, Philadelphia, Pa., 1971. MR 46 #9602. MR 0310504 (46:9602)
  • [11] C. R. DE BOOR, "On calculating with B-splines," J. Approximation Theory, v. 6, 1972, pp. 50-62. MR 0338617 (49:3381)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L10

Retrieve articles in all journals with MSC: 65L10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1975-0388788-3
Article copyright: © Copyright 1975 American Mathematical Society

American Mathematical Society