Models of difference schemes for by partial differential equations
Author:
G. W. Hedstrom
Journal:
Math. Comp. 29 (1975), 969977
MSC:
Primary 65M15
MathSciNet review:
0388797
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is well known that difference schemes for hyperbolic equations display dispersion of waves. For a general dissipative difference scheme, we present a dispersive wave equation and show that the dispersions are essentially the same when the initial data is a step function.
 [1]
R. D. RICHTMEYER & K. W. MORTON, Difference Methods for InitialValue Problems, 2nd ed., Wiley, New York, 1967. MR 36 #3515.
 [2]
H. KREISS & J. OLIGER, Methods for the Approximate Solution of Time Dependent Problems, Global Atmospheric Research Programme, Publications Series, no. 10, Geneva, 1973.
 [3]
C. W. HIRT, "Heuristic stability theory for finitedifference equations," J. Computational Phys., v. 2, 1968, pp. 339355.
 [4]
G.
R. McGuire and J.
Ll. Morris, A class of secondorder accurate methods for the
solution of systems of conservation laws, J. Computational Phys.
11 (1973), 531–549. MR 0331808
(48 #10140)
 [5]
N.
N. Janenko and Ju.
I. Šokin, The first differential approximation of difference
schemes for hyperbolic systems of equations, Sibirsk. Mat. Ž.
10 (1969), 1173–1187 (Russian). MR 0255080
(40 #8287)
 [6]
Raymond
C. Y. Chin, Dispersion and Gibbs phenomenon associated with
difference approximations to initial boundaryvalue problems for hyperbolic
equations, J. Computational Phys. 18 (1975),
no. 3, 233–247. MR 0391530
(52 #12351)
 [7]
Alain
Lerat and Roger
Peyret, Sur l’origine des oscillations apparaissant dans les
profils de choc calculés par des méthodes aux
différences, C. R. Acad. Sci. Paris Sér. AB
276 (1973), A759–A762 (French). MR 0314276
(47 #2828)
 [8]
Alain
Lerat and Roger
Peyret, Sur le choix de schémas aux différences du
second ordre fournissant des profils de choc sans oscillation, C. R.
Acad. Sci. Paris Sér. AB 277 (1973),
A363–A366 (French). MR 0337150
(49 #1922)
 [9]
Philip
Brenner and Vidar
Thomée, Estimates near discontinuities for some difference
schemes, Math. Scand. 28 (1971), 329–340
(1972). MR
0305613 (46 #4743)
 [10]
G.
W. Hedstrom, The rate of convergence of some difference
schemes, SIAM J. Numer. Anal. 5 (1968),
363–406. MR 0230489
(37 #6051)
 [11]
S.
I. Serdjukova, The oscillations that arise in numerical
calculations of the discontinuous solutions of differential equations,
Ž. Vyčisl. Mat. i Mat. Fiz. 11 (1971),
411–424 (Russian). MR 0284018
(44 #1248)
 [1]
 R. D. RICHTMEYER & K. W. MORTON, Difference Methods for InitialValue Problems, 2nd ed., Wiley, New York, 1967. MR 36 #3515.
 [2]
 H. KREISS & J. OLIGER, Methods for the Approximate Solution of Time Dependent Problems, Global Atmospheric Research Programme, Publications Series, no. 10, Geneva, 1973.
 [3]
 C. W. HIRT, "Heuristic stability theory for finitedifference equations," J. Computational Phys., v. 2, 1968, pp. 339355.
 [4]
 G. R. McGUIRE & J. L1. MORRIS, "A class of secondorder accurate methods for the solution of systems of conservation laws," J. Computational Phys., v. 11, 1973, pp. 531549. MR 48 #10140. MR 0331808 (48:10140)
 [5]
 N. N. JANENKO & Ju. I. ŠOKIN, "The first differential approximation of difference schemes for hyperbolic systems of equations," Sibirsk. Mat. Ž., v. 10, 1969, pp. 11731187 = Siberian Math. J., v. 10, 1969, pp. 868880. MR 40 #8287. MR 0255080 (40:8287)
 [6]
 RAYMOND C. Y. CHIN, "Dispersion and Gibbs phenomenon associated with difference approximations to initial boundaryvalue problem for hyperbolic equations," J. Computational Phys. (To appear.) MR 0391530 (52:12351)
 [7]
 ALAIN LERAT & ROGER PEYRET, "Sur l'origine des oscillations apparaissant dans les profils de choc calculés par des méthodes aux différences," C. R. Acad. Sci. Paris Sér. AB, v. 276, 1973, pp. A759A762. MR 47 #2828. MR 0314276 (47:2828)
 [8]
 ALAIN LERAT & ROGER PEYRET, "Sur le choix de schémas aux différences du second ordre fournissant des profils de choc sans oscillation," C. R. Acad. Sci. Paris Sér. AB, v. 277, 1973, pp. A363A366. MR 0337150 (49:1922)
 [9]
 PHILIP BRENNER & VIDAR THOMÉE, "Estimates near discontinuities for some difference schemes," Math. Scand., v. 28, 1971, pp. 329340 (1972). MR 46 #4743. MR 0305613 (46:4743)
 [10]
 G. W. HEDSTROM, "The rate of convergence of some difference schemes," SIAM J. Numer. Anal., v. 5, 1968, pp. 363406. MR 37 #6051. MR 0230489 (37:6051)
 [11]
 S. I. SERDJUKOVA, "The oscillations that arise in numerical calculations of the discontinuous solutions of differential equations," Ž. Vyčisl. Mat. i Mat. Fiz., v. 11, 1971, pp. 411424. (Russian) MR 44 #1248. MR 0284018 (44:1248)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65M15
Retrieve articles in all journals
with MSC:
65M15
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197503887974
PII:
S 00255718(1975)03887974
Keywords:
Hyperbolic equations,
discontinuities,
models of difference schemes
Article copyright:
© Copyright 1975
American Mathematical Society
