Models of difference schemes for by partial differential equations

Author:
G. W. Hedstrom

Journal:
Math. Comp. **29** (1975), 969-977

MSC:
Primary 65M15

DOI:
https://doi.org/10.1090/S0025-5718-1975-0388797-4

MathSciNet review:
0388797

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is well known that difference schemes for hyperbolic equations display dispersion of waves. For a general dissipative difference scheme, we present a dispersive wave equation and show that the dispersions are essentially the same when the initial data is a step function.

**[1]**R. D. RICHTMEYER & K. W. MORTON,*Difference Methods for Initial-Value Problems*, 2nd ed., Wiley, New York, 1967. MR**36**#3515.**[2]**H. KREISS & J. OLIGER,*Methods for the Approximate Solution of Time Dependent Problems*, Global Atmospheric Research Programme, Publications Series, no. 10, Geneva, 1973.**[3]**C. W. HIRT, "Heuristic stability theory for finite-difference equations,"*J. Computational Phys.*, v. 2, 1968, pp. 339-355.**[4]**G. R. McGUIRE & J. L1. MORRIS, "A class of second-order accurate methods for the solution of systems of conservation laws,"*J. Computational Phys.*, v. 11, 1973, pp. 531-549. MR**48**#10140. MR**0331808 (48:10140)****[5]**N. N. JANENKO & Ju. I. ŠOKIN, "The first differential approximation of difference schemes for hyperbolic systems of equations,"*Sibirsk. Mat. Ž.*, v. 10, 1969, pp. 1173-1187 =*Siberian Math. J.*, v. 10, 1969, pp. 868-880. MR**40**#8287. MR**0255080 (40:8287)****[6]**RAYMOND C. Y. CHIN, "Dispersion and Gibbs phenomenon associated with difference approximations to initial boundary-value problem for hyperbolic equations,"*J. Computational Phys.*(To appear.) MR**0391530 (52:12351)****[7]**ALAIN LERAT & ROGER PEYRET, "Sur l'origine des oscillations apparaissant dans les profils de choc calculés par des méthodes aux différences,"*C. R. Acad. Sci. Paris Sér. A--B*, v. 276, 1973, pp. A759-A762. MR**47**#2828. MR**0314276 (47:2828)****[8]**ALAIN LERAT & ROGER PEYRET, "Sur le choix de schémas aux différences du second ordre fournissant des profils de choc sans oscillation,"*C. R. Acad. Sci. Paris Sér. A--B*, v. 277, 1973, pp. A363-A366. MR**0337150 (49:1922)****[9]**PHILIP BRENNER & VIDAR THOMÉE, "Estimates near discontinuities for some difference schemes,"*Math. Scand.*, v. 28, 1971, pp. 329-340 (1972). MR**46**#4743. MR**0305613 (46:4743)****[10]**G. W. HEDSTROM, "The rate of convergence of some difference schemes,"*SIAM J. Numer. Anal.*, v. 5, 1968, pp. 363-406. MR**37**#6051. MR**0230489 (37:6051)****[11]**S. I. SERDJUKOVA, "The oscillations that arise in numerical calculations of the discontinuous solutions of differential equations,"*Ž. Vyčisl. Mat. i Mat. Fiz.*, v. 11, 1971, pp. 411-424. (Russian) MR**44**#1248. MR**0284018 (44:1248)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M15

Retrieve articles in all journals with MSC: 65M15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1975-0388797-4

Keywords:
Hyperbolic equations,
discontinuities,
models of difference schemes

Article copyright:
© Copyright 1975
American Mathematical Society