Editorial Committee

JAMES H. BRAMBLE, Chairman. Center for Applied Mathematics, 275 Olin Hall, Cornell Univ., Ithaca, NY 14853
WALTER GAUTSCHI, Computer Sciences Dept., Purdue Univ., Lafayette, IN 47907
ALSTON D. HOUSEHOLDER, Dept. of Mathematics, Ayres Hall, The Univ. of Tennessee, Knoxville, TN 37916
JOHN W. WRENCH, JR., Route 5, Box 237, Frederick, MD 21701

Technical Editor

CAROL A. HOLLAND, Center for Applied Mathematics, 275 Olin Hall, Cornell Univ., Ithaca, NY 14853

Board of Associate Editors

JAMES W. DANIEL, Dept. of Mathematics, Univ. of Texas at Austin, Austin, TX 78712
DONALD GOLDFARB, Dept. of Computer Sciences, School of Engineering, The City College of
the City Univ. of New York, 139th Street & Convent Avenue, New York, NY 10031
EUGENE ISAACSON, New York Univ., Courant Institute of Mathematical Sciences, 251 Mercer
Street, New York, NY 10012
HEINZ-OTTO KREISS, Computer Science Dept., Univ. of Uppsala, Uppsala, Sturegaten 4, Sweden
YUDELL L. LUKE, Dept. of Mathematics, Univ. of Missouri at Kansas City, Kansas City,
MO 64110
JAMES N. LYNNESS, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
MORRIS NEWMAN, Mathematics Division, National Bureau of Standards, Washington, DC 20234
BERESFORD PARLETT, Dept. of Computer Science, Univ. of California, Berkeley, CA 94720
LAWRENCE E. PAYNE, Dept. of Mathematics, Cornell Univ., Ithaca, NY 14850
PHILIP RABINOWITZ, Dept. of Applied Mathematics, The Weizmann Institute of Science,
Rehovot, Israel
JOHN R. RICE, Division of Mathematical Sciences, Purdue Univ., Lafayette, IN 47907
DANIEL SHANKS, Naval Ship Research and Development Center, Bethesda, MD 20084
HANS J. STETTER, Institut für Numerische Mathematik, Technische Hochschule Wien,
Karisplatz 13, A-1040, Wien, Austria
VIDAR C. THOMÉE, Mathematics Dept., Chalmers Univ. of Technology, Göteborg, Sweden

Information for Subscribers

The journal is published quarterly in one volume per year, with issues numbered serially
since Volume 1, Number 1. Subscription prices for Volume 29 (1975) are list $36.00, institutional
member $24.00, individual AMS member $10.00, member of CBMS organizations
$15.00. Subscription prices for Volume 30 (1976) are list $48.00, institutional member $32.00,
individual AMS member $13.00, member of CBMS organizations $20.00. Back number prices
per volume for Volumes 1 – 27 (1943 – 1973) are list $36.00, AMS member $27.00; Volume
28 (1974) list $54.00, AMS member $40.50. Volume 29 (1975), when sold at back number
prices, will be list $54.00, AMS member $40.50.

Volumes 1 – 28 (1943 – 1974) are available on 16 mm microfilm either as negatives or positives
and may be mounted either on spools or in Eastman or 3M cartridges. Prices are $225.00 for
spools and $237.00 for cartridges. Only current subscribers will be eligible to purchase back
volumes on microfilm.

Unpublished Mathematical Tables

The editorial office of the journal maintains a repository of Unpublished Mathematical
Tables (UMT). When a table is deposited in the UMT repository a brief summary of its
contents is published in the section Reviews and Descriptions of Tables and Books. Upon request,
the chairman of the editorial committee will supply copies of any table for a nominal cost per page.

Subscriptions and orders for publications of the American Mathematical Society should
be addressed to American Mathematical Society, P. O. Box 1571, Annex Station, Providence,
R. I. 02901. All orders must be accompanied by payment. Other correspondence should be
addressed to P. O. Box 6248, Providence, R. I. 02940.

Copyright © 1975, American Mathematical Society
Second-class postage paid at Providence, Rhode Island, and at additional mailing offices
Mathematics of Computation

TABLE OF CONTENTS

OCTOBER 1975

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models of Difference Schemes for (u_t + u_x = 0) by Partial Differential Equations</td>
<td>G. W. Hedstrom</td>
<td>969</td>
</tr>
<tr>
<td>A Modified Galerkin Procedure with Hermite Cubics for Hyperbolic Problems</td>
<td>Lars Wahlbin</td>
<td>978</td>
</tr>
<tr>
<td>Higher Order Compact Implicit Schemes for the Wave Equation</td>
<td>Melvyn Ciment & Stephen H. Leventhal</td>
<td>985</td>
</tr>
<tr>
<td>A Finite Element Method for First Order Hyperbolic Equations</td>
<td>Garth A. Baker</td>
<td>995</td>
</tr>
<tr>
<td>A Comparison of Global Methods for Linear Two-Point Boundary Value Problems</td>
<td>R. D. Russell & J. M. Varah</td>
<td>1007</td>
</tr>
<tr>
<td>Free Boundaries and Finite Elements in One Dimension</td>
<td>William W. Hager & Gilbert Strang</td>
<td>1020</td>
</tr>
<tr>
<td>A Curiosity of Low-Order Explicit Runge-Kutta Methods</td>
<td>J. Oliver</td>
<td>1032</td>
</tr>
<tr>
<td>Diagonalization and Simultaneous Symmetrization of the Gas-Dynamic Matrices</td>
<td>R. F. Warming, Richard M. Beam & B. J. Hyett</td>
<td>1037</td>
</tr>
<tr>
<td>Polynomial Evaluation Schemes</td>
<td>A. C. R. Newbury</td>
<td>1046</td>
</tr>
<tr>
<td>Methods for Computing and Modifying the LDV Factors of a Matrix</td>
<td>Philip E. Gill, Walter Murray & Michael A. Saunders</td>
<td>1051</td>
</tr>
<tr>
<td>Convergence of the Fraser-Hart Algorithm for Rational Chebyshev Approximation</td>
<td>Charles B. Dunham</td>
<td>1078</td>
</tr>
<tr>
<td>On Generalized Gaussian Quadrature</td>
<td>Yudell L. Luke, Bing Yuan Ting & Marilyn J. Kemp</td>
<td>1083</td>
</tr>
<tr>
<td>Linear Filtering</td>
<td>Ralph Shapiro</td>
<td>1094</td>
</tr>
<tr>
<td>Cubatures of Precision (2k) and (2k + 1) for Hyperrectangles</td>
<td>Dalton R. Hunkins</td>
<td>1098</td>
</tr>
<tr>
<td>On Existence Criteria and Approximation Procedures for Integral Equations of the First Kind</td>
<td>C. W. Groetsch</td>
<td>1105</td>
</tr>
<tr>
<td>Uniform Asymptotic Expansions of the Incomplete Gamma Functions and the Incomplete Beta Function</td>
<td>N. M. Temme</td>
<td>1109</td>
</tr>
<tr>
<td>Some Analytic or Asymptotic Confluent Expansions for Functions of Several Variables</td>
<td>H. M. Srivastava & Rekha Panda</td>
<td>1115</td>
</tr>
<tr>
<td>The Distribution of Ideal Class Numbers of Real Quadratic Fields</td>
<td>M. D. Hendy</td>
<td>1129</td>
</tr>
<tr>
<td>A Note on (l)-Class Groups of Number Fields</td>
<td>Frank Gerth III</td>
<td>1135</td>
</tr>
<tr>
<td>Zeros of (p)-Adic (L)-Functions</td>
<td>Samuel S. Wagstaff, Jr.</td>
<td>1138</td>
</tr>
<tr>
<td>Sums of Distinct Elements from a Fixed Set</td>
<td>Torleiv Kløve</td>
<td>1144</td>
</tr>
<tr>
<td>Tables of Reductions of Symmetrized Inner Products ("Inner Plethysms") of Ordinary Irreducible Representations of Symmetric Groups</td>
<td>N. Esper</td>
<td>1150</td>
</tr>
</tbody>
</table>
Reviews and Descriptions of Tables and Books 1152
Baillie 51, Delves & Walsh, Editors 39, Dingle 40, Greenberger,
Aronofsky, McKenzie & Massy 41, Householder 42, Kirch 43,
O'Malley 44, Robinson 45, Schaefer 46, Templeman, Editor 47,
Weintraub 48, Willoughby, Editor 49, Yates 50.

Table Errata ... 1166
Brent 520

Corrigenda ... 1167
Goldberg & Abarbanel, Shanks

Indices to Volume XXIX 1168

Microfiche Supplements
Tables of Reductions of Symmetrized Inner Products (“Inner
Plethysms”) of Ordinary Irreducible Representations of Symmetric
Groups .. N. Esper

Computer Program for Compact Prime List Sol Weintraub

Manuscripts should be typewritten double-spaced in the format used by the journal. For journal abbreviations, see the latest Mathematical Reviews volume index. An author should submit the original and one copy of the manuscript and retain one copy. The author may suggest an appropriate editor for his paper. It is recommended that the author acquaint himself with the pertinent material contained in “A Manual for Authors of Mathematical Papers,” which is available from the American Mathematical Society. All contributions intended for publication and all books for review should be addressed to James H. Bramble, Chairman, Editorial Committee, Mathematics of Computation, Center for Applied Mathematics, 275 Olin Hall, Cornell University, Ithaca, New York 14853. Institutions sponsoring research reported in the journal are assessed page and microfiche charges.

Each article submitted for publication must be accompanied by a brief and reasonably self-contained abstract, and by AMS (MOS) subject classification numbers. If a list of key words and phrases is included, it will be printed as a footnote on the first page. A list of the classification numbers may be found in the Index to Mathematical Reviews, Volume 39 (June 1970).
The five articles in this volume are expository in nature, and they all deal with various aspects of
the theory of bounded linear operators on Hilbert space. The volume is very timely, because in the
last year or two great progress has been made on hard problems in this field, and thus operator
theory today is a very exciting area of mathematical research. One particular problem on which
considerable progress has been made recently is the invariant subspace problem. This is the question
whether every bounded linear operator on a separable, infinite-dimensional, complex Hilbert space H
has a nontrivial invariant subspace. Even though this problem remains unresolved, there are some
operators T on H for which the structure of the lattice of all invariant subspaces of T is known, and
the first article in this volume, “Invariant subspaces”, by Donald Sarason, is devoted to a discussion
of such operators. One of the interesting features of this lucid presentation is the interplay between
operator theory and classical analysis.

The second article is entitled “Weighted shift operators and analytic function theory” and was
written by Allen Shields. He has taken essentially all of the information presently known about weighted
shift operators (with scalar weights) and incorporated it into this comprehensive article. A central
theme of the exposition is the interaction between weighted shift operators and analytic function
theory, and as an added bonus for the reader, the article contains a list of thirty-two interesting
research problems.

The third article in the volume is a treatise entitled “A version of multiplicity theory” by Arlen
Brown. The problem treated is how to decide when two normal operators are unitarily equivalent.
(Unitary equivalence is the analog for operators of the concept of isomorphism for groups, rings,
etc.) The unitary equivalence problem for arbitrary operators is exceedingly difficult, but the theory
of spectral multiplicity, which can be approached in several different ways, furnishes a reasonable
complete set of unitary invariants for normal operators. The author focuses attention on the concept
of a spectral measure, and his clear presentation of this circle of ideas should lead to a better
understanding of multiplicity theory by beginners and experts alike.

The fourth article in this volume, “Canonical models” by R. G. Douglas, is concerned with the
theory of canonical models for operators on Hilbert space. The central underlying idea is that if
T is any contraction operator on H (i.e., if the norm of T is at most 1), then there is a canonical
construction that associates with T an operator M_T that is unitarily equivalent to T, called its
“canonical model”. One can therefore study T by studying M_T instead, and this theory has made
significant progress in the past ten years. The author, who has contributed substantially to the
geometrization of this theory, exposes in his article various important components of the theory,
and thereby gives the reader much insight into its successes and failures.

The final article in this volume, “A survey of the Lomonosov technique in the theory of invariant
subspaces” by Carl Pearcy and Allen Shields, is a survey of some new invariant-subspace theorems
that resulted from the brilliant and elegant method of proof introduced by Victor Lomonosov early
in 1973. Further study and refinement of this technique should lead to additional progress on the
invariant subspace problem.
The Influence of Computing on Mathematical Research and Education,
Edited by Joseph P. LaSalle

This volume contains seven of the invited addresses and fourteen of the contributed papers that were presented at the joint American Mathematical Society and the Mathematical Association of America Conference on the Influence of Computing on Mathematical Research and Education held at the University of Montana, August 13—24, 1973.

The invited addresses were directed primarily to the influence of the computer on mathematical research and the applications of mathematics and secondarily on what this means for the teaching of mathematics and the education of mathematicians. The contributed papers describe more specifically some experiments in developing courses in mathematics with computing and algorithmic orientations and a few reports on computer influenced research.

The titles of the seven invited addresses and their authors follow:

The Influence of Computing on Research in Number Theory by D. H. Lehmer
The Influence of Computers on Algebra by Charles C. Sims
Computational Probability and Statistics by Ulf Grenander
An Introduction to Some Current Research in Numerical Computational Complexity by J. F. Traub
Applied Mathematics and Computing by Peter D. Lax
The Unexpected Impact of Computers on Science and Mathematics by Thomas E. Cheatham, Jr.

The titles of the fourteen contributed papers and their authors follow:

Computational Complex Analysis by Peter Henrici
Combinatorial Games with an Annihilation rule by Aviezri S. Fraenkel
The Integration of Computing and Mathematics at the Open University by F. B. Lovis and R. V. M. Zahar
Real Time Computer Graphics Techniques in Geometry by Thomas Banchoff and Charles Strauss
Visual Geometry, Computer Graphics and Theorems of Perceived Type by Philip J. Davis
The Design and Use of an Undergraduate Numerical Analysis Laboratory by Myron Ginsberg
Statistical and Numerical Analysis: A Computer Oriented Approach by Andre R. Brousseau
Some Problems in Computational Probability by Marcel F. Neuts
The Influence of Computing on Generalized Inverse Applications in Statistical Analysis by Cecil R. Hallum
On Using the Electronic Analog Computer to Illustrate Mathematical Concepts by Tyre A. Newton
An Inexpensive Computer Assist in Teaching Large Enrollment Mathematics Courses by Edward L. Spitznagel, Jr.
A new Computer Oriented (Algorithmic) Linear Algebra Course—Preliminary Report by Robert Ducharme
Computer Supplemented Business Oriented Mathematics by Kenneth L. Hankerson and Gene A. Kemper

Only some college training in mathematics is needed to read most of the volume. It should be of some interest to high school teachers of mathematics.

INDEX TO MATHEMATICS OF COMPUTATION, 1943—1969

Edited by
Yudell L. Luke, Jet Wimp and Wyman Fair

462 + xviii pages; list price $19.95; institutional member price $14.96; individual member price $9.97
ISBN 0-8218-4000-2; to order, please specify MCOMIN/1

The INDEX TO MATHEMATICS OF COMPUTATION is a compilation, by author and by subject, of all material which has appeared in MATHEMATICS OF COMPUTATION and its predecessor, MATHEMATICAL TABLES AND OTHER AIDS TO COMPUTATION, during the years 1943—1969—twenty-three published volumes. The INDEX contains over 7,000 entries. This is an unusual compilation because of the unique character of the journal which not only publishes research papers, but also publishes reviews of material on mathematics of computation and a table errata section covering a number of other publications. In addition, an unpublished mathematical tables (UMT) file is maintained.

A new classification system, which was developed in 1969 by a committee chaired by Yudell Luke at the Midwest Research Institute, is used in the subject classification index. In this section, all articles, tables, reviews, etc. are classified. The classification scheme is designed as an indexing system for retrieval of information in MATHEMATICS OF COMPUTATION, and the present index contains classification numbers for all entries beginning with 1943.

The author index has been set up so that it gives bibliographical information on all of the items published in the journal. Information in this index includes title of article; translated title of books not in English, French, German, or Italian; title of book which is a collection of articles written by a number of authors; volume, year, and number of pages; publisher of a book; journal title of periodicals, information concerning translations; MATHEMATICAL REVIEWS numbers; subject classification. Items are listed alphabetically by author and chronologically under each author's entry. Each article is identified by both an ordering numeral and an identifying code in order that the reader may tell quickly whether the information listed concerns a primary research publication, a review of the work, errata to a table, or any of the other types of information covered by the journal. The following codes are used:

P = research paper
R = review of article or book
T = table in UMT (unpublished mathematical table) file
E = table errata
Q = queries and replies
M = microfiche

These identifying codes appear in the subject classification index, also, to refer the reader to the author index.

The identifying code appearing in both indexes provides a cross-reference system that enables the reader to retrieve information rapidly. For example, if the following entry appears in the subject classification index

3.10 Linear Equations
Smith, A. B. 1 PR, 3E

the reader knows immediately that under Smith's name in the author index, there will be listed both a research article on the subject of linear equations, written by Smith, and a review of the article. In addition, an errata to a table which Smith published in another journal will be listed.

The preparation and publication of the subject classification index was supported in part by a grant from the National Science Foundation (GN-691).

Orders must be prepaid. Please send to
AMERICAN MATHEMATICAL SOCIETY
P. O. Box 1571, Annex Station
Providence, Rhode Island 02901
Four Sets of Collected Reviews from Mathematical Reviews

In addition to subject classifications, each set contains an author index including title, journal or publisher, and year of publication.

REVSIEWS OF PAPERS IN ALGEBRAIC TOPOLOGY, TOPOLOGICAL GROUPS, AND HOMOLOGICAL ALGEBRA
Edited by Norman E. Steenrod
- as printed in MATHEMATICAL REVIEWS, volumes 1—34 inclusive
- arranged by topic under 290 headings
- 2 parts, 1,447 pages (1969)

REVSIEWS ON INFINITE GROUPS
Edited by Gilbert Baumslag
- as printed in MATHEMATICAL REVIEWS, volumes 1—40
- a compilation of 4,563 reviews
- classified under 24 major and 264 minor headings
- 2 parts, 1,062 pages (1974)

REVSIEWS OF PAPERS ON FINITE GROUPS
Edited by Daniel Gorenstein
- as printed in MATHEMATICAL REVIEWS, volumes 1—40
- classified under 21 major headings
- 3,200 reviews
- 1 volume, 736 pages (1974)

REVSIEWS OF PAPERS IN NUMBER THEORY
Edited by William J. LeVeque
- as printed in MATHEMATICAL REVIEWS, volumes 1—44
- divided into 19 main categories and 347 subdivisions
- 14,426 reviews
- 6 volumes, 2,966 pages (1974—75)

Orders must be prepaid
American Mathematical Society
P. O. Box 1571, Providence, R. I. 02901
Reviews and Descriptions of Tables and Books 1152
 Baillie 51, Delves & Walsh, Editors 39, Dingle 40, Greenberger,
 Aronofsky, McKenney & Massy 41, Householder 42, Kirch 43,
 O'Malley 44, Robinson 45, Schaefer 46, Templeman, Editor 47,
 Weintraub 48, Willoughby, Editor 49, Yates 50.
Table Errata ... 1166
 Brent 520
Corrigenda .. 1167
 Goldberg & Abarbanel, Shanks
Indices to Volume XXIX 1168
Microfiche Supplements
 Tables of Reductions of Symmetrized Inner Products ("Inner
 Plethysms") of Ordinary Irreducible Representations of Symmetric
 Groups ... N. Esper
 Computer Program for Compact Prime List Sol Weintraub

The editorial committee would welcome readers' comments about this microfiche
feature. Please send comments to Professor James H. Bramble, MATHE-
MATICS OF COMPUTATION, Center for Applied Mathematics, 275 Olin
Hall, Cornell University, Ithaca, New York 14853.
Mathematics of Computation

TABLE OF CONTENTS

OCTOBER 1975

<table>
<thead>
<tr>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Models of Difference Schemes for $u_t + u_x = 0$ by Partial Differential Equations</td>
<td>G. W. Hedstrom</td>
<td>969</td>
</tr>
<tr>
<td>A Modified Galerkin Procedure with Hermite Cubics for Hyperbolic Problems</td>
<td>Lars Wahlbin</td>
<td>978</td>
</tr>
<tr>
<td>Higher Order Compact Implicit Schemes for the Wave Equation</td>
<td>Melvyn Ciment & Stephen H. Leventhal</td>
<td>985</td>
</tr>
<tr>
<td>A Finite Element Method for First Order Hyperbolic Equations</td>
<td>Garth A. Baker</td>
<td>995</td>
</tr>
<tr>
<td>A Comparison of Global Methods for Linear Two-Point Boundary Value Problems</td>
<td>R. D. Russell & J. M. Varah</td>
<td>1007</td>
</tr>
<tr>
<td>Free Boundaries and Finite Elements in One Dimension</td>
<td>William W. Hager & Gilbert Strang</td>
<td>1020</td>
</tr>
<tr>
<td>A Curiosity of Low-Order Explicit Runge-Kutta Methods</td>
<td>J. Oliver</td>
<td>1032</td>
</tr>
<tr>
<td>Diagonalization and Simultaneous Symmetrization of the Gas-Dynamic Matrices</td>
<td>R. F. Warming, Richard M. Beam & B. J. Hyett</td>
<td>1037</td>
</tr>
<tr>
<td>Polynomial Evaluation Schemes</td>
<td>A. C. R. Newbery</td>
<td>1046</td>
</tr>
<tr>
<td>Methods for Computing and Modifying the LDV Factors of a Matrix</td>
<td>Philip E. Gill, Walter Murray & Michael A. Saunders</td>
<td>1051</td>
</tr>
<tr>
<td>Convergence of the Fraser-Hart Algorithm for Rational Chebyshev Approximation</td>
<td>Charles B. Dunham</td>
<td>1078</td>
</tr>
<tr>
<td>On Generalized Gaussian Quadrature</td>
<td>Yudell L. Luke, Bing Yuan Ting & Marilyn J. Kemp</td>
<td>1083</td>
</tr>
<tr>
<td>Linear Filtering</td>
<td>Ralph Shapiro</td>
<td>1094</td>
</tr>
<tr>
<td>Cubatures of Precision $2k$ and $2k + 1$ for Hyperrectangles</td>
<td>Dalton R. Hunkins</td>
<td>1098</td>
</tr>
<tr>
<td>On Existence Criteria and Approximation Procedures for Integral Equations of the First Kind</td>
<td>C. W. Groetsch</td>
<td>1105</td>
</tr>
<tr>
<td>Uniform Asymptotic Expansions of the Incomplete Gamma Functions and the Incomplete Beta Function</td>
<td>N. M. Temme</td>
<td>1109</td>
</tr>
<tr>
<td>Some Analytic or Asymptotic Confluent Expansions for Functions of Several Variables</td>
<td>H. M. Srivastava & Rekha Panda</td>
<td>1115</td>
</tr>
<tr>
<td>The Distribution of Ideal Class Numbers of Real Quadratic Fields</td>
<td>M. D. Hendy</td>
<td>1129</td>
</tr>
<tr>
<td>A Note on l-Class Groups of Number Fields</td>
<td>Frank Gerth III</td>
<td>1135</td>
</tr>
<tr>
<td>Zeros of p-Adic L-Functions</td>
<td>Samuel S. Wagstaff, Jr.</td>
<td>1138</td>
</tr>
<tr>
<td>Sums of Distinct Elements from a Fixed Set</td>
<td>Torleiv Kløve</td>
<td>1144</td>
</tr>
<tr>
<td>Tables of Reductions of Symmetrized Inner Products (“Inner Plethysms”) of Ordinary Irreducible Representations of Symmetric Groups</td>
<td>N. Esper</td>
<td>1150</td>
</tr>
</tbody>
</table>