Generation of conjugate directions for unconstrained minimization without derivatives

Author:
Larry Nazareth

Journal:
Math. Comp. **30** (1976), 115-131

MSC:
Primary 65K05

MathSciNet review:
0398100

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We analyze a technique for unconstrained minimization without derivatives. This stems from two theorems proved by M. J. D. Powell. A particular version, which we consider in detail, is related to the Jacobi process for finding the eigensystem of a symmetric matrix, and the two processes, although different, help to illuminate one another. We study convergence of the search directions to mutual conjugacy, cases when cycling occurs and identify a broad class of 'cyclic patterns' for which convergence to mutual conjugacy is proven.

**[1]**M. J. D. Powell,*An efficient method for finding the minimum of a function of several variables without calculating derivatives*, Comput. J.**7**(1964), 155–162. MR**0187376****[2]**Willard I. Zangwill,*Minimizing a function without calculating derivatives*, Comput. J.**10**(1967), 293–296. MR**0234614****[3]**Richard P. Brent,*Algorithms for minimization without derivatives*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. Prentice-Hall Series in Automatic Computation. MR**0339493****[4]**N. W. BRODLIE,*A New Method for Unconstrained Minimization without Evaluating Derivatives*, IBM Report UKSC-0019-0019, IBM, Peterlee, United Kingdom, 1972.**[5]**M. J. D. POWELL,*Unconstrained Minimization Algorithms Without Computation of Derivatives*, UK. A. E. A. Harwell Report HL72/1713, 1972.**[6]**J. L. NAZARETH, Part I:*Unified Approach to Unconstrained Minimization*. Part II:*Generation of Conjugate Directions for Unconstrained Minimization Without Derivatives*, Dept. of Computer Science, Univ. of California, Berkeley, Rep. No. 23, 1973.**[7]**Eldon R. Hansen,*On cyclic Jacobi methods*, J. Soc. Indust. Appl. Math.**11**(1963), 448–459. MR**0156458****[8]**J. L. NAZARETH,*On the Convergence of the Cyclic Jacobi Process*, Argonne National Lab. Tech. Memo, ANL-AMD, 1974.**[9]**J. H. Wilkinson,*Note on the quadratic convergence of the cyclic Jacobi process*, Numer. Math.**4**(1962), 296–300. MR**0146954****[10]**J. H. Wilkinson,*The algebraic eigenvalue problem*, Clarendon Press, Oxford, 1965. MR**0184422****[11]**G. E. Forsythe and P. Henrici,*The cyclic Jacobi method for computing the principal values of a complex matrix*, Trans. Amer. Math. Soc.**94**(1960), 1–23. MR**0109825**, 10.1090/S0002-9947-1960-0109825-2**[12]**Peter Henrici,*On the speed of convergence of cyclic and quasicyclic Jacobi methods for computing eigenvalues of Hermitian matrices*, J. Soc. Indust. Appl. Math.**6**(1958), 144–162. MR**0095582****[13]**H. P. M. van Kempen,*On the convergence of the classical Jacobi method for real symmetric matrices with non-distinct eigenvalues*, Numer. Math.**9**(1966), 11–18. MR**0202290****[14]**Joel N. Franklin,*Matrix theory*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1968. MR**0237517**

Retrieve articles in *Mathematics of Computation*
with MSC:
65K05

Retrieve articles in all journals with MSC: 65K05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0398100-2

Article copyright:
© Copyright 1976
American Mathematical Society