Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

A table of totally real cubic fields


Author: I. O. Angell
Journal: Math. Comp. 30 (1976), 184-187
MSC: Primary 12A30
MathSciNet review: 0401701
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper the author describes the construction of a table of totally real cubic number fields. Each field is distinguished by the coefficients of a generating polynomial, the index of this polynomial over the field and the discriminant of the field. The class number and a fundamental pair of units is also given.


References [Enhancements On Off] (What's this?)

  • [1] I. O. Angell, A table of complex cubic fields, Bull. London Math. Soc. 5 (1973), 37–38. MR 0318099
  • [2] P. BACHMANN, Allgemeine Arithmetik der Zahlkörper, Leipzig, 1905.
  • [3] H. DAVENPORT, "On the product of three homogeneous linear forms. II," Proc. London Math. Soc. (2), v. 44, 1938; pp. 412-431.
  • [4] H. Davenport and H. Heilbronn, On the density of discriminants of cubic fields, Bull. London Math. Soc. 1 (1969), 345–348. MR 0254010
  • [5] B. N. Delone and D. K. Faddeev, Theory of Irrationalities of Third Degree, Acad. Sci. URSS. Trav. Inst. Math. Stekloff, 11 (1940), 340 (Russian). MR 0004269
  • [6] H. J. Godwin, On totally complex quartic fields with small discriminants, Proc. Cambridge Philos. Soc. 53 (1957), 1–4. MR 0082527
  • [7] H. J. Godwin and P. A. Samet, A table of real cubic fields, J. London Math. Soc. 34 (1959), 108–110. MR 0100579
  • [8] D. SHANKS, "Review of I. O. Angell, A table of complex cubic fields," Math. Comp.,v. 29, 1975, pp. 661-665. RMT 33.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12A30

Retrieve articles in all journals with MSC: 12A30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1976-0401701-6
Article copyright: © Copyright 1976 American Mathematical Society