Tridiagonal fourth order approximations to general two-point nonlinear boundary value problems with mixed boundary conditions

Author:
Robert S. Stepleman

Journal:
Math. Comp. **30** (1976), 92-103

MSC:
Primary 65L10

MathSciNet review:
0408259

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper develops fourth order discretizations to the two-point boundary value problem

**[1]**B. T. Allen,*A new method of solving second-order differential equations when the first derivative is present*, Comput. J.**8**(1965/1966), 392–394. MR**0189248****[2]**A. K. Aziz and B. E. Hubbard,*Bounds for the solution of the Sturm-Liouville problem with application to finite difference methods*, J. Soc. Indust. Appl. Math.**12**(1964), 163–178. MR**0165701****[3]**L. COLLATZ,*The Numerical Treatment of Differential Equations*, Springer, Berlin, 1966.**[4]**J. DANIEL & B. SWARTZ,*Extrapolated Collocation for Two-Point Boundary-Value Problems Using Cubic Splines*, Technical Report LA-DC-72-1520, Los Alamos Scientific Laboratory, Los Alamos, 1972.**[5]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[6]**Herbert B. Keller,*Numerical methods for two-point boundary-value problems*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1968. MR**0230476****[7]**Herbert B. Keller,*Accurate difference methods for nonlinear two-point boundary value problems*, SIAM J. Numer. Anal.**11**(1974), 305–320. MR**0351098****[8]**Milton Lees,*Discrete methods for nonlinear two-point boundary value problems*, Numerical Solution of Partial Differential Equations (Proc. Sympos. Univ. Maryland, 1965) Academic Press, New York, 1966, pp. 59–72. MR**0202323****[9]**V. PEREYRA,*High Order Finite Difference Solution of Differential Equations*, Technical Report STAN-CS-73-348, Computer Science Dept., Stanford University, 1973.**[10]**R. D. Russell and L. F. Shampine,*A collocation method for boundary value problems*, Numer. Math.**19**(1972), 1–28. MR**0305607****[11]**J. SHOOSMITH,*A Study of Monotone Matrices With an Application to the High-Order, Finite-Difference Solution of a Linear Two-Point Boundary-Value Problem*, Dissertation, Department of Applied Mathematics and Computer Science, University of Virginia, Charlottesville, 1973.**[12]**R. STEPLEMAN, "High order solution of mildly nonlinear elliptic boundary value problems,"*Proceedings of the AICA International Symposium on Computer Methods for Partial Differential Equations*, Lehigh University, 1975.

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1976-0408259-6

Keywords:
Boundary value problems,
mixed boundary conditions,
fourth order discretization

Article copyright:
© Copyright 1976
American Mathematical Society