Maximal Binary Matrices and Sum of Two Squares

By C. H. Yang

Abstract. A maximal (+1, −1)-matrix of order 66 is constructed by a method of matching two finite sequences. This method also produced many new designs for maximal (+1, −1)-matrices of order 42 and new designs for a family of H-matrices of order 26·2^n. A nonexistence proof for a (*)-type H-matrix of order 36, consequently for Golay complementary sequences of length 18, is also given.

Let M be a 2n × 2n (+1, −1)-matrix, then the absolute value of det M is equal to or less than μ_{2n}, where μ_{2n} = (2n)^n, if n is even; and μ_{2n} = 2^n(2n − 1)(n − 1)^{n−1}, if n is odd (see [1], [2] and their references).

When n is even and the absolute value of det M is equal to μ_{2n}, then the matrix M is called a nontrivial Hadamard matrix or H-matrix. Another characterization of an H-matrix M of order m is that it satisfies MM^T = ml_m, where l_m is the m × m identity matrix, T indicates the transposed matrix. (m must be equal to 1, 2, or 4n.)

A sufficient condition for (+1, −1)-matrix M of order 2n being maximal is that the following condition holds:

\[MM^T = \begin{bmatrix} P_n & 0 \\ 0 & P_n \end{bmatrix}, \]

where \(P_n = 2nI_n \), when n is even (i.e. when M is an H-matrix); and \(P_n = (2n - 2)J_n + 2J_n \), when n is odd, \(J_n \) is the \(n \times n \) matrix whose every entry is 1.

When n is odd, such maximal (+1, −1)-matrices \(M_{2n} \) satisfying the condition (1) have been known for 1 ≤ n ≤ 31, except n = 11, 17, and 29 (see [1], [2], and [4]). Such maximal matrices \(M_{2n} \) can be constructed by the following standard form:

\[M_{2n} = \begin{bmatrix} A & B \\ -B^T & A^T \end{bmatrix}, \]

where A and B are \(n \times n \) circulant matrices with entries 1 or −1.

For maximal matrices \(M_{2n} \) of type (*), the condition (1) is equivalent to

\[AA^T + BB^T = P_n. \]

Let \((a_k) \) and \((b_k) \), \(0 ≤ k ≤ n − 1 \), be, respectively, the first row entries of matrices A and B, then the condition (2) is also equivalent to each of the following conditions (3) and (4) (see [4], [5]).
\[|A(w)|^2 + |B(w)|^2 = P_n(w), \]

where \(A(w) = \sum_{k=0}^{n-1} a_k w^k \), \(B(w) = \sum_{k=0}^{n-1} b_k w^k \), \(w \) is any \(n \)th root of unity; and \(a_k, b_k \) are either 1 or -1. \(P_n(w) = 2n \), for even \(n \); and \(P_n(w) = 2(n + \sum_{k=1}^{n-1} w^k) \), for odd \(n \).

\[|C(s)|^2 + |D(s)|^2 = \left\lfloor \frac{n}{2} \right\rfloor, \]

where \(C(s) = \sum_{k=0}^{n-1} c_k s^k \), \(D(s) = \sum_{k=0}^{n-1} d_k s^k \), \(s \) is any nontrivial \(n \)th root of unity (i.e. \(s \neq 1 \)), \(c_k = 1 \) whenever \(a_k = 1 \), and \(c_k = 0 \) whenever \(a_k = -1 \), \(d_k \) is similarly defined by \(b_k \), and \(\lfloor r \rfloor \) means the integral part of \(r \).

Let \(|C(s)|^2 = \sum_{k=0}^{n-1} p_k s^k \), \(|D(s)|^2 = \sum_{k=0}^{n-1} q_k s^k \). Then

\[|C(s)|^2 + |D(s)|^2 = \sum_{k=0}^{n-1} (p_k + q_k) s^k. \]

Consequently, the right-hand side of (5) is equal to \(\left\lfloor \frac{n}{2} \right\rfloor \), if \(p_k + q_k = r_n \), for each \(k \), \(1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \), where \(r_n = (p^2 + q^2 - p - q)/(n-1) \), \(p = p_0 \) and \(q = q_0 \) are, respectively, the number of +1's in each row of matrices \(A \) and \(B \).

The following maximal matrices \(M_{2n} \) with the corresponding \(C(s) \) and \(D(s) \) have been obtained for \(n = 21, 33, \) and \(26 \), by matching two finite sequences \((p_k) \) and \((q_k) \) such that \(p_k + q_k = r_n \), for each \(k \), \(1 \leq k \leq \left\lfloor \frac{n}{2} \right\rfloor \). Let \(C(s) = \sum_{k \in C} s^k \), \(k \in C \), and \(D(s) = \sum_{k \in D} s^k \), \(k \in D \); \(s^n = 1 \), where \(s \) is a nontrivial \(n \)th root of unity. Then we have the following \(C \) and \(D \) in Table I for \(n = 21 \).

Table I

<table>
<thead>
<tr>
<th>(C)</th>
<th>(D)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0, 1, 3, 6, 8, 12</td>
<td>0, 1, 2, 3, 4, 8, 11, 12, 16, 18</td>
</tr>
<tr>
<td>0, 1, 2, 4, 11, 17</td>
<td>0, 1, 2, 3, 6, 8, 10, 11, 15, 18</td>
</tr>
<tr>
<td>0, 1, 4, 10, 15, 17</td>
<td>0, 1, 2, 3, 4, 5, 9, 11, 14, 17</td>
</tr>
<tr>
<td>0, 1, 5, 10, 13, 15</td>
<td>0, 1, 2, 3, 4, 5, 8, 11, 15, 17</td>
</tr>
<tr>
<td>0, 1, 4, 10, 15, 17</td>
<td>0, 1, 2, 3, 4, 6, 7, 10, 14, 16</td>
</tr>
<tr>
<td>0, 1, 3, 7, 10, 15</td>
<td>0, 1, 2, 3, 4, 6, 8, 11, 12, 16</td>
</tr>
<tr>
<td>0, 1, 4, 7, 14, 16</td>
<td>0, 1, 2, 3, 4, 6, 7, 11, 13, 16</td>
</tr>
<tr>
<td>0, 1, 4, 8, 14, 16</td>
<td>0, 1, 2, 3, 4, 6, 7, 11, 13, 16</td>
</tr>
<tr>
<td>0, 1, 4, 8, 10, 16</td>
<td>0, 1, 2, 3, 4, 6, 7, 11, 14, 16</td>
</tr>
</tbody>
</table>

For example, \((+1, -1)\) matrices \(A \), corresponding to \(C(s) \) with \(C = \{0, 1, 3, 6, 8, 12\} \), can be obtained for \(s = w^k \), \(w = \exp(2\pi i/21) \), if \(k \) is relatively prime to 21. These matrices \(A \) are listed in Table II, where \(+\) stands for \(+1\) and \(-\) for \(-1\).
Table II

<table>
<thead>
<tr>
<th>k</th>
<th>First row of $(+1, -1)$-matrix A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$++---$ $-+++--$ $------$ $-----$</td>
</tr>
<tr>
<td>2</td>
<td>$++++$ $-----$ $+++--$ $-----$</td>
</tr>
<tr>
<td>4</td>
<td>$-+++$ $------$ $++--+$ $-----$</td>
</tr>
<tr>
<td>5</td>
<td>$-----$ $------$ $++++$ $-----$</td>
</tr>
<tr>
<td>8</td>
<td>$++-+$ $--++$ $-----$ $-----$</td>
</tr>
<tr>
<td>10</td>
<td>$+-+$ $--+$ $-----$ $-----$</td>
</tr>
</tbody>
</table>

For $n = 33$, we have $C = \{0, 1, 2, 3, 7, 8, 11, 13, 15, 18, 27, 30\}$ and $D = \{0, 1, 2, 3, 5, 8, 12, 15, 16, 17, 21, 25, 27\}$.

When n is even, M_{2n} is an H-matrix and for $n = 26$, we have $C = \{0, 1, 2, 3, 4, 5, 7, 8, 11, 16, 19, 21\}$ and $D = \{0, 1, 2, 3, 4, 5, 9, 12, 16, 18, 22\}$. By applying Theorem 1 of [5] once, we obtain $(*)$-type H-matrices of order 104, i.e. for $n = 52$, we have $C = \{0, 1, 2, 3, 4, 7, 10, 15, 17, 21\}$ and $D = \{0, 2, 4, 10, 13, 14, 15, 16, 17, 21, 22, 23, 27, 29, 31, 32, 34, 38, 39, 41, 42, 43, 47, 49, 51\}$; or $C = \{0, 1, 2, 4, 9, 10, 11, 14, 16, 19, 22, 23, 25, 29, 31, 32, 34, 38, 39, 41, 42, 43, 45, 47, 49, 51\}$ and $D = \{0, 2, 3, 4, 5, 7, 10, 11, 13, 14, 15, 16, 19, 22, 23, 25, 27, 31, 32, 33, 37, 38, 39, 41, 42\}$. By applying the above theorem n times, we obtain $(*)$-type H-matrices of order 52.2^n.

Other $(*)$-type H-matrices M_{52} with the corresponding C and D are found as follows:

- $C = \{0, 1, 2, 3, 4, 7, 10, 15, 17, 21\}$, $D = \{0, 1, 2, 4, 6, 7, 10, 11, 15, 18, 20\}$; or
- $C = \{0, 1, 2, 3, 4, 7, 9, 12, 16, 20\}$, $D = \{0, 1, 2, 4, 6, 12, 13, 17, 18, 20, 23\}$; or
- $C = \{0, 1, 2, 3, 5, 8, 12, 13, 16, 22\}$, $D = \{0, 1, 3, 4, 6, 8, 10, 12, 13, 18, 19\}$.

A complex H-matrix of order n is an $n \times n$ matrix γ whose entries are ± 1 or $\pm i$ such that $\gamma \overline{\gamma}^T = nI_n$, where $\overline{\gamma}$ is the complex conjugate of γ. It should be noted that existence of a $(*)$-type H-matrix of order $2n$ with symmetric circulant $n \times n$ submatrices A and B implies existence of a complex symmetric circulant $n \times n$ H-matrix $\gamma = \alpha + i\beta$, where $\alpha = (A + B)/2$ and $\beta = (A - B)/2$. Consequently, no $(*)$-type H-matrices of order $2n$ with symmetric submatrices A and B exist when $n = 2p^m$ or $n = 2k$ for $k > 4$, where p is an odd prime; m and k positive integers (see Theorem 1 of [3]).

Also we have

Theorem. No $(*)$-type H-matrix of order 36 exists regardless of symmetry in submatrices A and B.

Suppose on the contrary such a $(*)$-type H-matrix exists. Let $C(s) = C_0(s^2) + sC_1(s^2)$ and $D(s) = D_0(s^2) + sD_1(s^2)$ be the corresponding polynomials of the H-matrix...
satisfying the condition (4). Then \(-s\) is also an 18th root of unity and \(C(-s) = C_0(s^2) - sC_1(s^2)\) and \(D(-s) = D_0(s^2) - sD_1(s^2)\).

Since \(|B(s)|^2 = B(s)B(s^{-1})\) and \(|B(-s)|^2 = B(-s)B(-s^{-1})\) for \(B(s) = C(s)\) or \(D(s)\), we have for \(s \neq \pm 1\),

\[
18 = |C(s)|^2 + |D(s)|^2 + |C(-s)|^2 + |D(-s)|^2
= 2(|C_0(t)|^2 + |C_1(t)|^2 + |D_0(t)|^2 + |D_1(t)|^2),
\]

where \(t = s^2\), a nontrivial 9th root of unity. Consequently, we have

\[
|C_0(t)|^2 + |C_1(t)|^2 + |D_0(t)|^2 + |D_1(t)|^2 = 9. \tag{6}
\]

By setting \(s = -1\) in (4), we have

\[
C(-1)^2 + D(-1)^2 = 9. \tag{7}
\]

Since \(C(-1) = C_0(1) - C_1(1)\) and \(D(-1) = D_0(1) - D_1(1)\) are integers, without loss of generality, we can assume that \(C(-1)^2 = 0\) and \(D(-1)^2 = 9\), from the condition (7). Consequently, \(C_0(t)\) and \(C_1(t)\) must each have three nonvanishing terms in \(t\), and one of \(D_k(t)\) must have three terms in \(t\) and the other \(D_j(t)\) six terms, where \(k = 0\) or \(1\), \(j \neq k\). And \(D_j(t) = -D_j(t) = \sum t^k - D_j(t)\) must have three terms in \(t\).

When \(t = w^k\), \(w = \exp(2\pi i/3)\), \(k = 1\) or 2: \(|B_k(w)|\), where \(B = C\) or \(D\), \(k = 1\) or 0, can only take the value 0, \(\sqrt{3}\), or 3. This is because \(B_k(w)\) is of the form: \(1 + w + w^2\), or \(\pm(2 + w^m)w^m\), where \(n, m = 0, 1,\) or 2 and only \(D_j(w) = -D_j(w)\) has \(-\) sign.

There are only two possibilities for \(|B_k(w)|\)'s to satisfy the condition (6): Case 1, three of them must be equal to \(\sqrt{3}\) and the other one 0; or Case 2, one of them must be 3 and the other three 0.

For Case 1, without loss of generality, let \(|C_k(w)| = 0\), then \(|C(w)| = |C_j(w^2)| = |D_h(w)| = \sqrt{3}\), where \(k = 0\) or 1; \(j \neq k\); and \(j, h = 0\) or 1. Also,

\[
|D(w)| = |D_0(w^2) + wD_1(w^2)|
= |\pm(2 + w^{2k})w^{2h} \pm w(2 + w^{2m})w^{2n}| = |2 + w^{2k} - (2 + w^{2m})w^{2q+1}|,
\]

where \(k, m = 1\) or 2; \(h, n = 0, 1,\) or 2; and \(q = n - h\), can only take the value 0, \(\sqrt{3}\), or 3.\(^*\) This is because \(2 + w^{2k} - (2 + w^{2m})w^{2q+1}\) can be reduced to 0 or \(\pm(2 + w^m)w^m\), where \(n, m = 0, 1,\) or 2.\(^*\) Consequently, the condition (4) cannot be satisfied. When \(|D_h(w)| = 0\), \(|D(w)| = |D_m(w^2)| = |C_n(w)| = \sqrt{3}\), where \(h = 0\) or 1; \(h \neq m\); and \(m, n = 0\) or 1. Also, \(|C(w)| = |C_0(w^2) + wC_1(w^2)| = |2 + w^{2k} + (2 + w^{2m})w^{2q+1}|\) can only take the value 0, \(\sqrt{3}\) or 3. Therefore, the condition (4) cannot be satisfied.

For Case 2, without loss of generality, let \(|C_k(w)| = 3\) then \(|C_j(w)| = |D_h(w)| = 0\), where \(k = 0\) or 1; \(j \neq k\); and \(j, h = 0\) or 1. Consequently, for \(t \neq w^r\) \((r = 0, 1,\) or 2) \(C_k(t)\) must be of the form \(t^a(1 + t^3 + t^6)\) and the other three of the form \(\pm t^m u(t^2)\), where \(u(t) = 1 + t + t^2, q \neq 3\) (mod 9).

For nonnegative integers \(a, b, c\), such that \(a + b + c = 3\),

\(^*\)Excluding the case \(|D(w)| > 3\).
\[a|u(t)|^2 + b|u(t^2)|^2 + c|u(t^4)|^2 \]
\[= 3(a + b + c)+(2a+c)t_1+(2b+a)t_2+(2c+b)t_4, \]
where \(t_k = t^k + t^{-k}, \) the condition (8) holds for any \(t, \) a 9th root of unity which is not a 3rd root of unity. From now on let \(t \) be such a 9th root of unity, i.e. \(t \neq w^k. \)

Since there are only three distinct \(|u(r^i)| \)’s for \(r \neq 3 \pmod{9}, \) i.e. \(|u(t)|, |u(t^2)|, \) and \(|u(t^4)|, \) from the conditions (6) and (8), one of \(|C_j(t)| \) and \(|D_n(t)| \) must be equal to \(|u(t)| \) and the other two \(|u(t^2)| \) and \(|u(t^4)|. \) Let \(|C_j(t)| = |u(t)|; \) then \(|C(t)| = |C_j(t)| = |u(t^2)| \) and \(|D(t)| = |D_0(t^2) + tD_1(t^2)| = |u(t^2n) - t^k u(t^{2m})|, \) where \(n \neq m; \)
\(n, m = \pm 2 \) or \(\pm 4; \) \(k \) an integer \(\pmod{9}. \) Consequently, we have

\[|C(t)|^2 + |D(t)|^2 = 9 - P(n, m, k; t), \]

where
\[
P(n, m, k; t) = t^k u(t^{2m}) u(t^{-2n}) + t^{-k} u(t^{-2m}) u(t^{2n})
\]
\[= \sum_{\alpha} t_{\alpha}, \quad \alpha \in \{ k, k-2n, k-4n, k + 2m, k + 4m, k + 2(m-n),
\]
\[k + 4(m-n), k + 2m - 4n, k + 4m - 2n \}. \]

By using identities \(P(n, m, k; t) = P(m, n, -k; t) = P(-m, -n, k; t) = P(-n, -m, -k; t) \) and performing computations and simplifications, \(P(n, m, k; t) \) is found to take the value \(t_2 - t_4, t_4 - t_1, 3 + t_4 - t_2, -3 + t_2 - t_4, \) or \(2(t_4 - t_2) \) for \(n \neq m; n, m = \pm 2 \) or \(\pm 4; 0 \leq k \leq 8. \) Thus, the condition (4) cannot be satisfied since \(P(n, m, k; t) \neq 0 \) for \(t, \) any primitive 9th root of unity. Similarly, when \(|D_n(w)| = 3, \) we obtain \(|C(t)|^2 + |D(t)|^2 = 9 + P(n, m, k; t). \) Consequently, the condition (4) cannot be satisfied; and hence, no such (\(* \)-type \(H \)-matrix of order 36 exists.

Since existence of Golay complementary sequences \((a_k), (b_k), 0 \leq k \leq n - 1, \) of length \(n \) (see [6]) implies existence of a (\(* \)-type \(H \)-matrix of order 2\(n \) with the corresponding \(A(w) = \Sigma a_k w^k \) and \(B(w) = \Sigma b_k w^k \) satisfying the condition (3), nonexistence of Golay complementary sequences of length 18 is derived from nonexistence of a (\(* \)-type \(H \)-matrix of order 36.

Acknowledgment. I wish to thank the referee for comments and recommendations concerning nonexistence proof of a (\(* \)-type \(H \)-matrix of order 36 and references to Golay complementary sequences.

Department of Mathematics
SUNY, College at Oneonta
Oneonta, New York 13820

