Existence of Gauss interpolation formulas for the one-dimensional heat equation

Author:
David L. Barrow

Journal:
Math. Comp. **30** (1976), 24-34

MSC:
Primary 65M05

DOI:
https://doi.org/10.1090/S0025-5718-1976-0413523-0

MathSciNet review:
0413523

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a Jordan arc in the *x-t* plane satisfying , and when . Let . We prove the existence of Gauss interpolation formulas for *C* and the point , for solutions *u* of the one-dimensional heat equation, . Such formulas approximate in terms of a linear combination of its values on *C*. The formulas are characterized by the requirement that they are exact for as many basis functions (the heat polynomials) as possible.

**[1]**P. APPELL, "Sur l'équation et la théorie de la chaleur,"*J. Math. Pures Appl.*, v. 8, 1892, pp. 187-216.**[2]**D. L. BARROW & A. H. STROUD, "Existence of Gauss harmonic interpolation formulas,"*SIAM J. Numer. Anal.*(To appear.) MR**0413425 (54:1539)****[3]**D. COLTON, "The approximation of solutions to initial-boundary value problems for parabolic equations in one space variable,"*Quart. Appl. Math.*(To appear.) MR**0454348 (56:12599)****[4]**D. COLTON, "Complete families of solutions for parabolic equations with analytic coefficients,"*SIAM J. Math. Anal.*(To appear.) MR**0385322 (52:6186)****[5]**P. J. DAVIS &. M. W. WILSON, "Nonnegative interpolation formulas for uniformly elliptic equations,"*J. Approximation Theory*, v. 1, 1968, pp. 374-380. MR**39**#4559. MR**0243236 (39:4559)****[6]**S. KARLIN & W. J. STUDDEN,*Tchebycheff Systems*:*With Applications in Analysis and Statistics*, Pure and Appl. Math., vol. 15, Interscience, New York, 1966. MR**34**#4757. MR**0204922 (34:4757)****[7]**J. M. ORTEGA & W. C. RHEINBOLDT,*Iterative Solution of Nonlinear Equations in Several Variables*, Academic Press, New York and London, 1970. MR**42**#8686. MR**0273810 (42:8686)****[8]**M. H. PROTTER & H. F. WEINBERGER,*Maximum Principles in Differential Equations*, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR**36**#2935. MR**0219861 (36:2935)****[9]**P. C. ROSENBLOOM & D. V. WIDDER, "Expansions in terms of heat polynomials and associated functions,"*Trans. Amer. Math. Soc.*, v. 92, 1959, pp. 220-266. MR**21**#5845. MR**0107118 (21:5845)****[10]**B. D. SHRIVER,*Interpolation Formulas of Gauss Type for Approximate Solution of the n-Dimensional Heat Equation*, Ph.D. Thesis, State University of New York at Buffalo, 1971.**[11]**J. T. SCHWARTZ,*Nonlinear Functional Analysis*, Gordon and Breach, New York, 1969. MR**0433481 (55:6457)****[12]**A. H. STROUD, "Gauss harmonic interpolation formulas,"*Comm. Assoc. Comput. Mach.*, v. 17, 1974, pp. 471-475. MR**0362827 (50:15265)****[13]**A. H. STROUD, "Some interpolation formulas for the Neumann problem for the*n*sphere,"*SIAM J. Numer. Anal.*(To appear.) MR**0398051 (53:1906)****[14]**A. H. STROUD & D. L. BARROW, "Gauss formulas for the Dirichlet problem,"*Bull. Amer. Math. Soc.*, v. 80, 1974, p. 1230. MR**0436556 (55:9499)****[15]**D. V. WIDDER, "Analytic solutions of the heat equation,"*Duke Math. J.*, v. 29, 1962, pp. 497-503. MR**28**#364. MR**0157127 (28:364)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M05

Retrieve articles in all journals with MSC: 65M05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0413523-0

Article copyright:
© Copyright 1976
American Mathematical Society