Factorization tables for trinomials over

Authors:
Jacob T. B. Beard, Jr. and Karen I. West

Journal:
Math. Comp. **30** (1976), 179-183

DOI:
https://doi.org/10.1090/S0025-5718-76-99670-8

MathSciNet review:
0392940

Full-text PDF

Abstract | References | Additional Information

Abstract: Tables placed in the UMT file give the complete factorization over , of each trinomial of degree , as below, together with the generalized Euler -function whenever is not prime and . In addition, the numerical exponent and *q*-polynomial is given for each whenever .

*n*over arbitrary .

**[1]**J. T. B. BEARD, JR., "Computing in ,"*Math. Comp.*, v. 28, 1974, pp. 1159-1166. MR**0352058 (50:4546)****[2]**J. T. B. BEARD, JR. & K. I. WEST, "Some primitive polynomials of the third kind,"*Math. Comp.*, v. 28, 1974, pp. 1166-1167. MR**0366879 (51:3125)****[3]**J. T. B. BEARD, JR. & K. I. WEST, "Factorization tables for over ,"*Math. Comp.*, v. 28, 1974, pp. 1167-1168. MR**0364196 (51:451)****[4]**J. T. B. BEARD, JR. & K. I. WEST, "Factorization tables for binomials over ,"*Math. Comp.*(Submitted.)**[5]**E. R. BERLEKAMP,*Algebraic Coding Theory*, McGraw-Hill, New York, 1968. MR**38**#6873. MR**0238597 (38:6873)****[6]**R. J. McELIECE, "Factorization of polynomials over finite fields,"*Math. Comp.*, v. 23, 1969, pp. 861-867. MR**41**#1694a. MR**0257039 (41:1694a)****[7]**O. ORE, "Contributions to the theory of finite fields,"*Trans. Amer. Math. Soc.*, v. 36, 1934, pp. 243-274. MR**1501740****[8]**N. ZIERLER & J. BRILLHART, "On primitive trinomials ,"*Information and Control*, v. 13, 1968, pp. 541-554. MR**38**#5750. MR**0237468 (38:5750)**

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-76-99670-8

Keywords:
Factorization,
Galois field,
trinomial,
Euler -function,
numerical exponent,
*q*-polynomial

Article copyright:
© Copyright 1976
American Mathematical Society