Higher order approximations to the boundary conditions for the finite element method
Author:
J. J. Blair
Journal:
Math. Comp. 30 (1976), 250262
MSC:
Primary 65N30
MathSciNet review:
0398123
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: We consider here the approximation of essential boundary conditions for the finite element solutions of second order elliptic equations in two dimensions. Nonhomogeneous boundary conditions on curved boundaries are treated. The approach is to use trial functions which interpolate (in a generalized sense) functions satisfying the boundary conditions. The work is directed to showing in what manner this interpolation should be done to achieve the maximum accuracy and computational simplicity. These methods can be used to construct approximations of arbitrary high order of accuracy. Several examples are given.
 [1]
Shmuel
Agmon, Lectures on elliptic boundary value problems, Prepared
for publication by B. Frank Jones, Jr. with the assistance of George W.
Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co.,
Inc., Princeton, N.J.TorontoLondon, 1965. MR 0178246
(31 #2504)
 [2]
Alan
E. Berger, 𝐿² error estimates for finite elements with
interpolated boundary conditions, Numer. Math. 21
(1973/74), 345–349. MR 0343655
(49 #8395)
 [3]
Alan
Berger, Ridgway
Scott, and Gilbert
Strang, Approximate boundary conditions in the finite element
method, Symposia Mathematica, Vol. X (Convegno di Analisi Numerica,
INDAM, Rome, 1972), Academic Press, London, 1972, pp. 295–313.
MR
0403258 (53 #7070)
 [4]
J.
J. Blair, Bounds for the change in the solutions of second order
elliptic PDE’s when the boundary is perturbed, SIAM J. Appl.
Math. 24 (1973), 277–285. MR 0317557
(47 #6104)
 [5]
J. BLAIR, "Error bounds for spline approximation." (Unpublished manuscript.)
 [6]
James
H. Bramble and Joachim
A. Nitsche, A generalized Ritzleastsquares method for Dirichlet
problems, SIAM J. Numer. Anal. 10 (1973),
81–93. MR
0314284 (47 #2836)
 [7]
James
H. Bramble, Todd
Dupont, and Vidar
Thomée, Projection methods for
Dirichlet’s problem in approximating polygonal domains with
boundaryvalue corrections, Math. Comp. 26 (1972), 869–879.
MR
0343657 (49 #8397), http://dx.doi.org/10.1090/S00255718197203436577
 [8]
James
H. Bramble and Alfred
H. Schatz, RayleighRitzGalerkin methods for Dirichlet’s
problem using subspaces without boundary conditions, Comm. Pure Appl.
Math. 23 (1970), 653–675. MR 0267788
(42 #2690)
 [9]
J.
H. Bramble and A.
H. Schatz, Least squares methods for 2𝑚th
order elliptic boundaryvalue problems, Math.
Comp. 25 (1971),
1–32. MR
0295591 (45 #4657), http://dx.doi.org/10.1090/S00255718197102955918
 [10]
James
H. Bramble and Miloš
Zlámal, Triangular elements in the finite
element method, Math. Comp. 24 (1970), 809–820. MR 0282540
(43 #8250), http://dx.doi.org/10.1090/S00255718197002825400
 [11]
R.
E. Carlson and C.
A. Hall, Ritz approximations to twodimensional boundary value
problems, Numer. Math. 18 (1971/72), 171–181.
MR
0305621 (46 #4751)
 [12]
J.L.
Lions and E.
Magenes, Problèmes aux limites non homogènes et
applications. Vol. 1, Travaux et Recherches Mathématiques, No.
17, Dunod, Paris, 1968 (French). MR 0247243
(40 #512)
 [13]
J.L.
Lions and J.
Peetre, Sur une classe d’espaces d’interpolation,
Inst. Hautes Études Sci. Publ. Math. 19 (1964),
5–68 (French). MR 0165343
(29 #2627)
 [14]
Gilbert
Strang, Approximation in the finite element method, Numer.
Math. 19 (1972), 81–98. MR 0305547
(46 #4677)
 [15]
Gilbert
Strang and Alan
E. Berger, The change in solution due to change in domain,
Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ.
California, Berkeley, Calif., 1971), Amer. Math. Soc., Providence, R.I.,
1973, pp. 199–205. MR 0337023
(49 #1796)
 [16]
Miloš
Zlámal, On the finite element method, Numer. Math.
12 (1968), 394–409. MR 0243753
(39 #5074)
 [17]
Miloš
Zlámal, A finite element procedure of the second order of
accuracy, Numer. Math. 14 (1969/1970), 394–402.
MR
0256577 (41 #1233)
 [1]
 S. AGMON, Lectures on Elliptic Boundary Value Problems, Van Nostrand Math. Studies, no. 2, Van Nostrand, Princeton, N. J., 1965. MR 31 #2504. MR 0178246 (31:2504)
 [2]
 A. BERGER, " error estimates for finite elements with interpolated boundary conditions," Numer. Math., v. 21, 1973/74, pp. 345349. MR 49 #8395. MR 0343655 (49:8395)
 [3]
 A. BERGER, R. SCOTT & G. STRANG, "Approximate boundary conditions in the finite element method," Symposia Mathematica, vol. X, Academic Press, New York, 1972, pp. 757761. MR 0403258 (53:7070)
 [4]
 J. BLAIR, "Bounds for the change in the solutions of second order elliptic PDE's when the boundary is perturbed," SIAM J. Appl. Math., v. 24, 1973, pp. 277285. MR 47 #6104. MR 0317557 (47:6104)
 [5]
 J. BLAIR, "Error bounds for spline approximation." (Unpublished manuscript.)
 [6]
 J. BRAMBLE & J. NITSCHE, "A generalized Ritzleastsquares method for Dirichlef prtblems," SIAM J. Numer. Anal., v. 10, 1973, pp. 8193. MR 47 #2836. MR 0314284 (47:2836)
 [7]
 J. BRAMBLE, T. DUPONT & V. THOMEE, "Projection methods for Dirichlet's problem in approximating polygonal domains with boundaryvalue corrections," Math. Comp., v. 26, 1972, pp. 869879. MR 49 #8397. MR 0343657 (49:8397)
 [8]
 J. BRAMBLE & A. SCHATZ, "RayleighRitzGalerkin methods for Dirichlet's problem using subspaces without boundary conditions," Comm. Pure Appl. Math., v. 23, 1970, pp. 653675. MR 42 #2690. MR 0267788 (42:2690)
 [9]
 J. BRAMBLE & A. SCHATZ, "Least squares methods for 2mth order elliptic boundaryvalue problems," Math. Comp., v. 25, 1971, pp. 132. MR 45 #4657. MR 0295591 (45:4657)
 [10]
 J. BRAMBLE & M. ZLAMAL, "Triangular elements in the finite element method," Math. Comp., v. 24, 1970, pp. 809820. MR 43 #8250. MR 0282540 (43:8250)
 [11]
 R. CARLSON & C. HALL, "Ritz approximations to two dimensional boundary value problems," Numer. Math., v. 18, 1971/72, pp. 171181. MR 46 #4751. MR 0305621 (46:4751)
 [12]
 J.L. LIONS & E. MAGENES, Problèmes aux limites non homogènes et applications, Vol. 1, Travaux et Recherches Mathématiques, no. 17, Dunod, Paris, 1968. MR 40 #512. MR 0247243 (40:512)
 [13]
 J.L. LIONS & J. PEETRE, "Sur une classe d'espaces d'interpolation," Inst. Hautes Etudés Sci. Publ. Math., no. 19, 1964, pp. 568. MR 29 #2627. MR 0165343 (29:2627)
 [14]
 G. STRANG, "Approximation in the finite element method," Numer. Math., v. 19, 1972, pp. 8198. MR 46 #4677. MR 0305547 (46:4677)
 [15]
 G. STRANG & A. BERGER, "The change in solution due to change in domain," Proc. Sympos. Pure Math., vol. 23, Amer. Math. Soc., Providence, R. I., 1973, pp. 199205. MR 0337023 (49:1796)
 [16]
 M. ZLAMAL, "On the finite element method," Numer. Math., v. 12, 1968, pp. 394409. MR 39 #5074. MR 0243753 (39:5074)
 [17]
 M. ZLAMAL, "A finite element procedure of the second order of accuracy," Numer. Math., v. 14, 1969/70, pp. 394402. MR 41 #1233. MR 0256577 (41:1233)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N30
Retrieve articles in all journals
with MSC:
65N30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197603981233
PII:
S 00255718(1976)03981233
Article copyright:
© Copyright 1976 American Mathematical Society
