Higher order approximations to the boundary conditions for the finite element method

Author:
J. J. Blair

Journal:
Math. Comp. **30** (1976), 250-262

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1976-0398123-3

MathSciNet review:
0398123

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider here the approximation of essential boundary conditions for the finite element solutions of second order elliptic equations in two dimensions. Nonhomogeneous boundary conditions on curved boundaries are treated.

The approach is to use trial functions which interpolate (in a generalized sense) functions satisfying the boundary conditions. The work is directed to showing in what manner this interpolation should be done to achieve the maximum accuracy and computational simplicity. These methods can be used to construct approximations of arbitrary high order of accuracy. Several examples are given.

**[1]**Shmuel Agmon,*Lectures on elliptic boundary value problems*, Prepared for publication by B. Frank Jones, Jr. with the assistance of George W. Batten, Jr. Van Nostrand Mathematical Studies, No. 2, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London, 1965. MR**0178246****[2]**Alan E. Berger,*𝐿² error estimates for finite elements with interpolated boundary conditions*, Numer. Math.**21**(1973/74), 345–349. MR**0343655**, https://doi.org/10.1007/BF01436388**[3]**Alan Berger, Ridgway Scott, and Gilbert Strang,*Approximate boundary conditions in the finite element method*, Symposia Mathematica, Vol. X (Convegno di Analisi Numerica, INDAM, Rome, 1972) Academic Press, London, 1972, pp. 295–313. MR**0403258****[4]**J. J. Blair,*Bounds for the change in the solutions of second order elliptic PDE’s when the boundary is perturbed*, SIAM J. Appl. Math.**24**(1973), 277–285. MR**0317557**, https://doi.org/10.1137/0124029**[5]**J. BLAIR, "Error bounds for spline approximation." (Unpublished manuscript.)**[6]**James H. Bramble and Joachim A. Nitsche,*A generalized Ritz-least-squares method for Dirichlet problems*, SIAM J. Numer. Anal.**10**(1973), 81–93. MR**0314284**, https://doi.org/10.1137/0710010**[7]**James H. Bramble, Todd Dupont, and Vidar Thomée,*Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections*, Math. Comp.**26**(1972), 869–879. MR**0343657**, https://doi.org/10.1090/S0025-5718-1972-0343657-7**[8]**James H. Bramble and Alfred H. Schatz,*Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions*, Comm. Pure Appl. Math.**23**(1970), 653–675. MR**0267788**, https://doi.org/10.1002/cpa.3160230408**[9]**J. H. Bramble and A. H. Schatz,*Least squares methods for 2𝑚th order elliptic boundary-value problems*, Math. Comp.**25**(1971), 1–32. MR**0295591**, https://doi.org/10.1090/S0025-5718-1971-0295591-8**[10]**James H. Bramble and Miloš Zlámal,*Triangular elements in the finite element method*, Math. Comp.**24**(1970), 809–820. MR**0282540**, https://doi.org/10.1090/S0025-5718-1970-0282540-0**[11]**R. E. Carlson and C. A. Hall,*Ritz approximations to two-dimensional boundary value problems*, Numer. Math.**18**(1971/72), 171–181. MR**0305621**, https://doi.org/10.1007/BF01436326**[12]**J.-L. Lions and E. Magenes,*Problèmes aux limites non homogènes et applications. Vol. 1*, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR**0247243****[13]**J.-L. Lions and J. Peetre,*Sur une classe d’espaces d’interpolation*, Inst. Hautes Études Sci. Publ. Math.**19**(1964), 5–68 (French). MR**0165343****[14]**Gilbert Strang,*Approximation in the finite element method*, Numer. Math.**19**(1972), 81–98. MR**0305547**, https://doi.org/10.1007/BF01395933**[15]**Gilbert Strang and Alan E. Berger,*The change in solution due to change in domain*, Partial differential equations (Proc. Sympos. Pure Math., Vol. XXIII, Univ. California, Berkeley, Calif., 1971) Amer. Math. Soc., Providence, R.I., 1973, pp. 199–205. MR**0337023****[16]**Miloš Zlámal,*On the finite element method*, Numer. Math.**12**(1968), 394–409. MR**0243753**, https://doi.org/10.1007/BF02161362**[17]**Miloš Zlámal,*A finite element procedure of the second order of accuracy*, Numer. Math.**14**(1969/1970), 394–402. MR**0256577**, https://doi.org/10.1007/BF02165594

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0398123-3

Article copyright:
© Copyright 1976
American Mathematical Society