An analysis of the finite element method using Lagrange multipliers for the stationary Stokes equations

Author:
Richard S. Falk

Journal:
Math. Comp. **30** (1976), 241-249

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1976-0403260-0

MathSciNet review:
0403260

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An error analysis is presented for the approximation of the stationary Stokes equations by a finite element method using Lagrange multipliers.

**[1]**I. BABUŠKA, "Approximation by Hill functions,"*Comment. Math. Univ. Carolinae*, v. 11, 1970, pp. 787-811. MR**45**#1396. MR**0292309 (45:1396)****[2]**I. BABUŠKA,*Approximation by Hill Functions*. II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.**[3]**I. BABUŠKA, "The finite element method with Lagrangian multipliers,"*Numer. Math.*v. 20, 1973, pp. 179-192. MR**0359352 (50:11806)****[4]**I. BABUŠKA,*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equtions*, A. K. Aziz (editor), Academic Press, New York, 1972. MR**0347104 (49:11824)****[5]**M. CROUSEIX & P. RAVIART,*Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations*. I, Revue Française d'Automatique, Informatique et Recherche Operationelle, 7 année, decembre 1973, R-3, pp. 33-76. MR**0343661 (49:8401)****[6]**R. S. FALK, "An analysis of the penalty method and extrapolation for the stationary Stokes equations," in*Advances in Computer Methods for Partial Differential Equations*, R. Vichnevetsky (editor), Proceedings of the AICA Symposium, Lehigh Univ., June, 1975, pp. 66-69.**[7]**R. S. FALK & J. T. KING, "A penalty and extrapolation method for the stationary Stokes equations,"*SIAM J. Numer. Anal.*(To appear.) MR**0471382 (57:11116)****[8]**R. S. FALK, "A finite element method for the stationary Stokes equations using trial functions which do not have to satisfy ,"*Math. Comp.*(To appear.) MR**0421109 (54:9114)****[9]**R. S. FALK,*A Ritz Method Based on a Complimentary Variational Principle*, Revue Francaise d'Automatique, Informatique et Recherche Operationelle. (To appear.) MR**0433915 (55:6885)****[10]**R. B. KELLOGG & J. E. OSBORN,*A Regularity Result for the Stokes Problem in a Convex Polygon*, Technical Note BN-804, Institute for Fluid Dynamics and Applied Mathematics University of Maryland, 1974.**[11]**O. A. LADYŽENSKAJA,*The Mathematical Theory of Viscous Incompressible Flow*, Fizmatigiz, Moscow, 1961; English transl., Gordon and Breach, New York, 1962. MR**27**#5034a, b.**[12]**J.-L. LIONS & E. MAGENES,*Problèmes aux limites non homogènes et applications*, Vol. 1, Travaux et Recherches Mathématiques, no. 17, Dunod, Paris, 1968. MR**40**#512. MR**0247243 (40:512)****[13]**R. TEMAM,*On the Theory and Numerical Analysis of the Navier-Stokes Equations*, Lecture Note #9, University of Maryland, June, 1973.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0403260-0

Article copyright:
© Copyright 1976
American Mathematical Society