An analysis of the finite element method using Lagrange multipliers for the stationary Stokes equations

Author:
Richard S. Falk

Journal:
Math. Comp. **30** (1976), 241-249

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1976-0403260-0

MathSciNet review:
0403260

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An error analysis is presented for the approximation of the stationary Stokes equations by a finite element method using Lagrange multipliers.

**[1]***Approximation by hill functions*, Comment. Math. Univ. Carolinae**11**(1970), 787–811. MR**0292309****[2]**I. BABUŠKA,*Approximation by Hill Functions*. II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.**[3]**Ivo Babuška,*The finite element method with Lagrangian multipliers*, Numer. Math.**20**(1972/73), 179–192. MR**0359352**, https://doi.org/10.1007/BF01436561**[4]**A. K. Aziz (ed.),*The mathematical foundations of the finite element method with applications to partial differential equations*, Academic Press, New York-London, 1972. MR**0347104****[5]**M. Crouzeix and P.-A. Raviart,*Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**7**(1973), no. R-3, 33–75. MR**0343661****[6]**R. S. FALK, "An analysis of the penalty method and extrapolation for the stationary Stokes equations," in*Advances in Computer Methods for Partial Differential Equations*, R. Vichnevetsky (editor), Proceedings of the AICA Symposium, Lehigh Univ., June, 1975, pp. 66-69.**[7]**Richard S. Falk and J. Thomas King,*A penalty and extrapolation method for the stationary Stokes equations*, SIAM J. Numer. Anal.**13**(1976), no. 5, 814–829. MR**0471382**, https://doi.org/10.1137/0713064**[8]**Richard S. Falk,*A finite element method for the stationary Stokes equations using trial functions which do not have to satisfy 𝑑𝑖𝑣𝜈=0*, Math. Comp.**30**(1976), no. 136, 698–702. MR**0421109**, https://doi.org/10.1090/S0025-5718-1976-0421109-7**[9]**Richard S. Falk,*A Ritz method based on a complementary variational principle*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér.**10**(1976), no. R-2, 39–48 (English, with Loose French summary). MR**0433915****[10]**R. B. KELLOGG & J. E. OSBORN,*A Regularity Result for the Stokes Problem in a Convex Polygon*, Technical Note BN-804, Institute for Fluid Dynamics and Applied Mathematics University of Maryland, 1974.**[11]**O. A. LADYŽENSKAJA,*The Mathematical Theory of Viscous Incompressible Flow*, Fizmatigiz, Moscow, 1961; English transl., Gordon and Breach, New York, 1962. MR**27**#5034a, b.**[12]**J.-L. Lions and E. Magenes,*Problèmes aux limites non homogènes et applications. Vol. 1*, Travaux et Recherches Mathématiques, No. 17, Dunod, Paris, 1968 (French). MR**0247243****[13]**R. TEMAM,*On the Theory and Numerical Analysis of the Navier-Stokes Equations*, Lecture Note #9, University of Maryland, June, 1973.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0403260-0

Article copyright:
© Copyright 1976
American Mathematical Society