Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An analysis of the finite element method using Lagrange multipliers for the stationary Stokes equations


Author: Richard S. Falk
Journal: Math. Comp. 30 (1976), 241-249
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1976-0403260-0
MathSciNet review: 0403260
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An error analysis is presented for the approximation of the stationary Stokes equations by a finite element method using Lagrange multipliers.


References [Enhancements On Off] (What's this?)

  • [1] I. BABUŠKA, "Approximation by Hill functions," Comment. Math. Univ. Carolinae, v. 11, 1970, pp. 787-811. MR 45 #1396. MR 0292309 (45:1396)
  • [2] I. BABUŠKA, Approximation by Hill Functions. II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.
  • [3] I. BABUŠKA, "The finite element method with Lagrangian multipliers," Numer. Math. v. 20, 1973, pp. 179-192. MR 0359352 (50:11806)
  • [4] I. BABUŠKA, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equtions, A. K. Aziz (editor), Academic Press, New York, 1972. MR 0347104 (49:11824)
  • [5] M. CROUSEIX & P. RAVIART, Conforming and Nonconforming Finite Element Methods for Solving the Stationary Stokes Equations. I, Revue Française d'Automatique, Informatique et Recherche Operationelle, 7 année, decembre 1973, R-3, pp. 33-76. MR 0343661 (49:8401)
  • [6] R. S. FALK, "An analysis of the penalty method and extrapolation for the stationary Stokes equations," in Advances in Computer Methods for Partial Differential Equations, R. Vichnevetsky (editor), Proceedings of the AICA Symposium, Lehigh Univ., June, 1975, pp. 66-69.
  • [7] R. S. FALK & J. T. KING, "A penalty and extrapolation method for the stationary Stokes equations," SIAM J. Numer. Anal. (To appear.) MR 0471382 (57:11116)
  • [8] R. S. FALK, "A finite element method for the stationary Stokes equations using trial functions which do not have to satisfy $ {\operatorname{div}}\;\vec \upsilon = 0$," Math. Comp. (To appear.) MR 0421109 (54:9114)
  • [9] R. S. FALK, A Ritz Method Based on a Complimentary Variational Principle, Revue Francaise d'Automatique, Informatique et Recherche Operationelle. (To appear.) MR 0433915 (55:6885)
  • [10] R. B. KELLOGG & J. E. OSBORN, A Regularity Result for the Stokes Problem in a Convex Polygon, Technical Note BN-804, Institute for Fluid Dynamics and Applied Mathematics University of Maryland, 1974.
  • [11] O. A. LADYŽENSKAJA, The Mathematical Theory of Viscous Incompressible Flow, Fizmatigiz, Moscow, 1961; English transl., Gordon and Breach, New York, 1962. MR 27 #5034a, b.
  • [12] J.-L. LIONS & E. MAGENES, Problèmes aux limites non homogènes et applications, Vol. 1, Travaux et Recherches Mathématiques, no. 17, Dunod, Paris, 1968. MR 40 #512. MR 0247243 (40:512)
  • [13] R. TEMAM, On the Theory and Numerical Analysis of the Navier-Stokes Equations, Lecture Note #9, University of Maryland, June, 1973.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1976-0403260-0
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society