Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 30 (1976), 371-380
DOI: https://doi.org/10.1090/S0025-5718-76-99667-8
Corrigendum: Math. Comp. 31 (1977), 617.
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] H. HASSE, Über die Klassenzahl abelscher Zahlkörper, Akademie-Verlag, Berlin, 1952, Tafel I, pp. 139-141. MR 0049239 (14:141a)
  • [2] E. KUMMER, "Über die Klassenzahl der aus n-ten Einheitswurzeln gebildeten komplexen Zahlen," Monatsh. Preuss. Akad. Wiss. Berlin, 1861, pp. 1051-1053.
  • [3] T. METSANKYLA, "Calculation of the first factor of the class number of the cyclotomic field," Math. Comp., v. 23, 1969, pp. 533-537. MR 0247738 (40:1001)
  • [4] R. SPIRA, "Calculation of the first factor of the cyclotomic class number," Computers in Number Theory, Academic Press, New York and London, 1971, pp. 149-151.
  • [5] R. SPIRA, Personal communication.
  • [6] M. NEWMAN, "A table of the first factor for prime cyclotomic fields," Math. Comp., v. 24, 1970, pp. 215-219. MR 0257029 (41:1684)
  • [1] MURRAY BERG, "Phi, the golden ratio (to 4599 decimal places) and Fibonacci numbers," Fibonacci Quart., v. 4, 1966, pp. 157-162.
  • [2] M. F. JONES, 22900D Approximations to the Square Roots of the Primes less than 100, reviewed in Math. Comp., v. 22, 1968, pp. 234-235, UMT 22.
  • [3] W. A. BEYER, N. METROPOLIS & J. R. NEERGAARD, Square Roots of Integers 2 to 15 in Various Bases 2 to 10: 88062 Binary Digits or Equivalent, reviewed in Math. Comp., v. 23, 1969, p. 679, UMT 45.
  • [1] P. BARRUCAND, H. C. WILLIAMS & L. BANIUK, "A computational technique for determining the class number of a pure cubic field," Math. Comp., v. 30, 1976, pp. 312-323. MR 0392913 (52:13726)
  • [2] Y. YAMAMOTO, "On unramified Galois extensions of quadratic number fields", Osaka J. Math., v. 7, 1970, pp. 57-76. MR 0266898 (42:1800)
  • [3] P. J. WEINBERGER, "Real quadratic fields with class numbers divisible by n", J. Number Theory, v. 5, 1973, pp. 237-241. MR 0335471 (49:252)
  • [4] DANIEL SHANKS, Systematic Examination of Littlewood's Bounds on $ L(1,\chi )$, Proc. Sympos. Pure Math., vol. 24, Amer. Math. Soc., Providence, R.I., 1973, pp. 267-283. MR 0337827 (49:2596)
  • [5] DANIEL SHANKS, "The simplest cubic fields", Math. Comp., v. 28. 1974, pp. 1137-1152. MR 0352049 (50:4537)
  • [6] J. E. LITTLEWOOD, "On the class-number of the corpus $ P(\sqrt { - k} )$", Proc. London Math. Soc., v. 28, 1928, pp. 358-372.
  • [7] P. LEVY, "Sur le développement en fraction continue d'un nombre choisi au hasard", Compositio Math., v. 3, 1936, pp. 286-303. MR 1556945
  • [8] DANIEL SHANKS, "Calculation and applications of Epstein zeta functions", Math. Comp., v. 29, 1975, pp. 271-287. MR 0409357 (53:13114a)
  • [1] RICHARD P. BRENT, UMT 4, Math. Comp., v. 29, 1975, p. 331. MR 0369287 (51:5522)
  • [2] RICHARD P. BRENT, "Irregularities in the distribution of primes and twin primes", ibid., pp. 43-55. MR 0369287 (51:5522)


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-76-99667-8
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society