Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A note on diophantine equation $ Y\sp{2}+k=X\sp{5}$


Author: Josef Blass
Journal: Math. Comp. 30 (1976), 638-640
MSC: Primary 10B15
DOI: https://doi.org/10.1090/S0025-5718-1976-0401638-2
MathSciNet review: 0401638
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if the class number of the quadratic field $ A(\sqrt { - k} )$ is not divisible by 5, and if k is not congruent to 7 modulo 8, then the equation $ {Y^2} + k = {X^5}$ has no solutions in rational integers X, Y with the exception of $ k = 1,19,341$.


References [Enhancements On Off] (What's this?)

  • [1] Z. I. BOREVIČ & I. R. ŠAFAREVIČ, Number Theory, "Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York and London, 1966. MR 30 #1080; 33 #4001. MR 0195803 (33:4001)
  • [2] J. H. E. COHN, "Lucas and Fibonacci numbers and some Diophantine equations," Proc. Glasgow Math. Assoc., v. 7, 1965, pp. 24-28. MR 31 #2202. MR 0177944 (31:2202)
  • [3] J. H. E. COHN, "Eight Diophantine equations," Proc. London Math. Soc., v. 16 (3), 1966, pp. 153-166. MR 32 #7492. MR 0190078 (32:7492)
  • [4] L. J. MORDELL, Diophantine Equations, Pure and Appl. Math., vol. 30, Academic Press, New York and London, 1969. MR 40 #2600. MR 0249355 (40:2600)
  • [5] O. WYLIE, "Solution of the problem: In the Fibonacci series $ {F_1} = 1,{F_2} = 1,{F_{n + 1}} = {F_n} + {F_{n - 1}}$, the first, second and twelfth terms are squares. Are there any others?," Amer. Math. Monthly, v. 71, 1964, pp. 220-222.
  • [6] J. BLASS, "On the diophantine equation $ {Y^2} + k = {X^5}$," Bull. Amer. Math. Soc., v. 80, 1974, p. 329. MR 48 #8380. MR 0330041 (48:8380)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10B15

Retrieve articles in all journals with MSC: 10B15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1976-0401638-2
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society