A note on diophantine equation

Author:
Josef Blass

Journal:
Math. Comp. **30** (1976), 638-640

MSC:
Primary 10B15

DOI:
https://doi.org/10.1090/S0025-5718-1976-0401638-2

MathSciNet review:
0401638

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that if the class number of the quadratic field is not divisible by 5, and if *k* is not congruent to 7 modulo 8, then the equation has no solutions in rational integers *X*, *Y* with the exception of .

**[1]**Z. I. BOREVIČ & I. R. ŠAFAREVIČ,*Number Theory*, "Nauka", Moscow, 1964; English transl., Pure and Appl. Math., vol. 20, Academic Press, New York and London, 1966. MR**30**#1080;**33**#4001. MR**0195803 (33:4001)****[2]**J. H. E. COHN, "Lucas and Fibonacci numbers and some Diophantine equations,"*Proc. Glasgow Math. Assoc.*, v. 7, 1965, pp. 24-28. MR**31**#2202. MR**0177944 (31:2202)****[3]**J. H. E. COHN, "Eight Diophantine equations,"*Proc. London Math. Soc.*, v. 16 (3), 1966, pp. 153-166. MR**32**#7492. MR**0190078 (32:7492)****[4]**L. J. MORDELL,*Diophantine Equations*, Pure and Appl. Math., vol. 30, Academic Press, New York and London, 1969. MR**40**#2600. MR**0249355 (40:2600)****[5]**O. WYLIE, "Solution of the problem: In the Fibonacci series , the first, second and twelfth terms are squares. Are there any others?,"*Amer. Math. Monthly,*v. 71, 1964, pp. 220-222.**[6]**J. BLASS, "On the diophantine equation ,"*Bull. Amer. Math. Soc.*, v. 80, 1974, p. 329. MR**48**#8380. MR**0330041 (48:8380)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10B15

Retrieve articles in all journals with MSC: 10B15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0401638-2

Article copyright:
© Copyright 1976
American Mathematical Society