Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of $ \pi $ using arithmetic-geometric mean


Author: Eugene Salamin
Journal: Math. Comp. 30 (1976), 565-570
MSC: Primary 10A30; Secondary 10A40, 33A25
DOI: https://doi.org/10.1090/S0025-5718-1976-0404124-9
MathSciNet review: 0404124
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A new formula for $ \pi $ is derived. It is a direct consequence of Gauss' arithmetic-geometric mean, the traditional method for calculating elliptic integrals, and of Legendre's relation for elliptic integrals. The error analysis shows that its rapid convergence doubles the number of significant digits after each step. The new formula is proposed for use in a numerical computation of $ \pi $, but no actual computational results are reported here.


References [Enhancements On Off] (What's this?)

  • [1] M. ABRAMOWITZ & I. A. STEGUN (Editors), Handbook of Mathematical Functions, With Formulas, Graphs and Mathematical Tables, Nat. Bur. Standards, Appl. Math. Ser., no. 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1966. MR 34 #8607. MR 0167642 (29:4914)
  • [2] R. FINKEL, L. GUIBAS & C. SIMONYI, private communication.
  • [3] K. F. GAUSS, Werke, Bd. 3, Gottingen, 1866, pp. 331-403.
  • [4] A. G. GREENHILL, The Applications of Elliptic Functions, Dover, New York, 1959. MR 22 #2724. MR 0111864 (22:2724)
  • [5] H. HANCOCK, Elliptic Integrals, Dover, New York, 1917. MR 0099454 (20:5893)
  • [6] H. JEFFREYS & B. S. JEFFREYS, Methods of Mathematical Physics, 3rd ed., Cambridge Univ. Press, London, 1962.
  • [7] L. V. KING, On the Direct Numerical Calculation of Elliptic Functions and Integrals, Cambridge Univ. Press, London, 1924.
  • [8] D. KNUTH, The Art of Computer Programming. Vol. 2: Seminumerical Algorithms, Addison-Wesley, Reading, Mass., 1969. MR 44 #3531. MR 0286318 (44:3531)
  • [9] A. M. LEGENDRE, Exercices de calcul intégral. Vol. 1, 1811.
  • [10] A. SCHÖNHAGE & V. STRASSEN, "Schnelle Multiplikation grosser Zahlen," Computing (Arch. Elektron. Rechnen), v. 7, 1971, pp. 281-292. MR 45 #1431. MR 0292344 (45:1431)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10A30, 10A40, 33A25

Retrieve articles in all journals with MSC: 10A30, 10A40, 33A25


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1976-0404124-9
Keywords: $ \pi $, arithmetic-geometric mean, elliptic integral, Landen's transformation, Legendre's relation, fast Fourier transform multiplication
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society