Properties of the sequences

Author:
Solomon W. Golomb

Journal:
Math. Comp. **30** (1976), 657-663

MSC:
Primary 10A40; Secondary 94A15

Erratum:
Math. Comp. **38** (1982), 335-336.

Erratum:
Math. Comp. **38** (1982), 335.

MathSciNet review:
0404129

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For applications to fast finite field transforms, one is interested in the arithmetic of , where the order of the multiplicative group, , is divisible by a high power of 2, and where the multiplicative order of 2 modulo *p* is large. Primes of the form appear well-suited to these objectives. Results are obtained on the divisibility properties of the numbers , and on the exponent of 2 modulo when is prime. Generalizations to various related types of sequences are also considered.

**[1]**Charles M. Rader,*Discrete convolutions via Mersenne transforms*, IEEE Trans. Computers**C-21**(1972), 1269–1273. MR**0438672****[2]**Irving S. Reed and T. K. Truong,*The use of finite fields to compute convolutions*, IEEE Trans. Information Theory**IT-21**(1975), 208–213. MR**0406677****[3]**Raphael M. Robinson,*A report on primes of the form 𝑘⋅2ⁿ+1 and on factors of Fermat numbers*, Proc. Amer. Math. Soc.**9**(1958), 673–681. MR**0096614**, 10.1090/S0002-9939-1958-0096614-7**[4]**J. C. Morehead,*Note on the factors of Fermat’s numbers*, Bull. Amer. Math. Soc.**12**(1906), no. 9, 449–451. MR**1558370**, 10.1090/S0002-9904-1906-01371-4**[5]**Emma Lehmer,*Criteria for cubic and quartic residuacity*, Mathematika**5**(1958), 20–29. MR**0095162****[6]**Raphael M. Robinson,*The converse of Fermat’s theorem*, Amer. Math. Monthly**64**(1957), 703–710. MR**0098057**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A40,
94A15

Retrieve articles in all journals with MSC: 10A40, 94A15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0404129-8

Article copyright:
© Copyright 1976
American Mathematical Society