The largest degrees of irreducible characters of the symmetric group

Author:
John McKay

Journal:
Math. Comp. **30** (1976), 624-631

MSC:
Primary 20C15; Secondary 20-04

MathSciNet review:
0404414

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The largest irreducible degrees and the partitions associated with them are tabulated for the symmetric group for *n* up to 75. Analytic upper and lower bounds are derived for the largest degree.

**[1]**R. M. Baer and P. Brock,*Natural sorting over permutation spaces*, Math. Comp.**22**(1968), 385–410. MR**0228216**, 10.1090/S0025-5718-1968-0228216-8**[2]**Robert L. Bivins, N. Metropolis, Paul R. Stein, and Mark B. Wells,*Characters of the symmetric groups of degree 15 and 16*, Math. Tables and Other Aids to Computation**8**(1954), 212–216. MR**0064776**, 10.1090/S0025-5718-1954-0064776-8**[3]**S. Chowla, I. N. Herstein, and W. K. Moore,*On recursions connected with symmetric groups. I*, Canadian J. Math.**3**(1951), 328–334. MR**0041849****[4]**Stig Comét,*Improved methods to calculate the characters of the symmetric group.*, Math. Comp.**14**(1960), 104–117. MR**0119451**, 10.1090/S0025-5718-1960-0119451-0**[5]**Walter Feit,*Characters of finite groups*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0219636****[6]**Donald E. Knuth,*The art of computer programming. Volume 3*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1973. Sorting and searching; Addison-Wesley Series in Computer Science and Information Processing. MR**0445948****[7]**B. F. LOGAN & L. A. SHEPP, "A variational problem for random Young tableaux." (To appear.)**[8]**W. F. LUNNON, "Multi-length arithmetic for Atlas." (Unpublished.)**[9]**J. McKAY, "Symmetric group characters--Algorithm 307,"*Comm. ACM*, v. 10, 1967, p. 451; ibid., v. 11, 1968, p. 14.**[10]**J. McKAY, "On the evaluation of multiplicative combinatorial expressions,"*Comm. ACM*, v. 11, 1968, p. 392.**[11]**J. McKAY, "Partitions in natural order--Algorithm 371,"*Comm. ACM*, v. 13, 1970, p. 52.

Retrieve articles in *Mathematics of Computation*
with MSC:
20C15,
20-04

Retrieve articles in all journals with MSC: 20C15, 20-04

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1976-0404414-X

Keywords:
Irreducible representation,
symmetric group,
largest degree

Article copyright:
© Copyright 1976
American Mathematical Society