Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

Extensions of the Mehler-Weisner and other results for the Hermite function


Author: M. E. Cohen
Journal: Math. Comp. 30 (1976), 553-564
MSC: Primary 33A65
MathSciNet review: 0419894
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to present expansions which generalize some well-known formulae for the Hermite function. Among these are the Weisner [20] extension of Mehler's [17] bilinear relation, some recent results of Carlitz [4], and the Bateman [2] addition theorem. A bilateral generating function involving the product of the Hermite and ultraspherical polynomials is given. Finally, some general polynomial expansion theorems are derived.


References [Enhancements On Off] (What's this?)

  • [1] Richard Askey, Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975. MR 0481145
  • [2] Harry Bateman, A partial differential equation connected with the functions of the parabolic cylinder, Bull. Amer. Math. Soc. 41 (1935), no. 12, 884–893. MR 1563210, 10.1090/S0002-9904-1935-06214-7
  • [3] Fred Brafman, Some generating functions for Laguerre and Hermite polynomials, Canad. J. Math. 9 (1957), 180–187. MR 0085363
  • [4] L. Carlitz, Some extensions of the Mehler formula, Collect. Math. 21 (1970), 117–130. MR 0279354
  • [5] M. E. Cohen, On Jacobi functions and multiplication theorems for integrals of Bessel functions, J. Math. Anal. Appl. 57 (1977), no. 2, 469–475. MR 0432945
  • [6] M. E. Cohen, On expansion problems: new classes of formulas for the classical functions, SIAM J. Math. Anal. 7 (1976), no. 5, 702–712. MR 0442305
  • [7] A. ERDÉLYI, "Über eine Erzeugende Funktion von Produkten Hermitescher Polynome," Math. Z., v. 44, 1938, pp. 201-211.
  • [8] Ervin Feldheim, Développements en série de polynomes d’Hermite et de Laguerre à l’aide des transformations de Gauss et de Hankel. I et II, Nederl. Akad. Wetensch., Proc. 43 (1940), 224–248 (French). MR 0001400
  • [9] H. W. Gould and A. T. Hopper, Operational formulas connected with two generalizations of Hermite polynomials, Duke Math. J. 29 (1962), 51–63. MR 0132853
  • [10] I. S. GRADŠTEĬN & L. M. RYŽTK, Table of Integrals. Series, and Products, 4th ed., Fizmatgiz, Moscow, 1963; English transl., Academic Press, New York and London, 1965. MR 28 #5198; 33 #5952.
  • [11] R. P. Gupta and G. C. Jain, A generalized Hermite distribution and its properties, SIAM J. Appl. Math. 27 (1974), 359–363. MR 0350087
  • [12] G. H. HARDY, "Summation of a series of polynomials of Laguerre," J. London Math. Soc., v. 7, 1932, pp. 138-139.
  • [13] E. HILLE, "On Laguerre's series. II," Proc Nat. Acad. Sci. U.S.A., v. 12, 1926, pp. 265-269.
  • [14] J. KAMPÉ de FÉRIET, Danske Vid. Selsk. Math. Fys. Medd., v. 5, 1923, no. 2.
  • [15] Eugene Lukacs, Characteristic functions, Griffin’s Statistical Monographs& Courses, No. 5. Hafner Publishing Co., New York, 1960. MR 0124075
  • [16] Y. L. LUKE, The Special Functions and Their Approximations. Vols. 1,2, Math. in Sci. and Engineering, vol. 53, Academic Press, New York and London, 1969. MR 39 #3039; 40 #2909.
  • [17] F. G. MEHLER, "Ueber die Entwichlung einer Funktion von beliebig vielen Variablen nach Laplaceschen Funktionen höhrer Ordnung," J. Reine Angew. Math., v. 66, 1866, pp. 161-176.
  • [18] O. V. Sarmanov and Z. N. Bratoeva, Probabilistic properties of bilinear expansions in Hermite polynomials, Teor. Verojatnost. i Primenen. 12 (1967), 520–531 (Russian, with English summary). MR 0216541
  • [19] G. N. WATSON, "Notes on generating functions of polynomials: (2) Hermite polynomials," J. London Math. Soc., v. 8, 1933, pp. 194-199.
  • [20] Louis Weisner, Generating functions for Hermite functions, Canad. J. Math. 11 (1959), 141–147. MR 0109903

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A65

Retrieve articles in all journals with MSC: 33A65


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1976-0419894-3
Keywords: Addition theorem, bilinear generating function, Gegenbauer polynomial, generalized function, Hermite function
Article copyright: © Copyright 1976 American Mathematical Society