Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Extensions of the Mehler-Weisner and other results for the Hermite function


Author: M. E. Cohen
Journal: Math. Comp. 30 (1976), 553-564
MSC: Primary 33A65
DOI: https://doi.org/10.1090/S0025-5718-1976-0419894-3
MathSciNet review: 0419894
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The purpose of this paper is to present expansions which generalize some well-known formulae for the Hermite function. Among these are the Weisner [20] extension of Mehler's [17] bilinear relation, some recent results of Carlitz [4], and the Bateman [2] addition theorem. A bilateral generating function involving the product of the Hermite and ultraspherical polynomials is given. Finally, some general polynomial expansion theorems are derived.


References [Enhancements On Off] (What's this?)

  • [1] R. ASKEY, Orthogonal Polynomials and Special Functions, Regional Conference Series in Applied Mathematics, no. 21, SIAM, Philadelphia, Pa., 1975. MR 0481145 (58:1288)
  • [2] H. BATEMAN, "A partial differential equation connected with the functions of the parabolic cylinder," Bull. Amer. Math. Soc., v. 41, 1935, pp. 884-893. MR 1563210
  • [3] F. BRAFMAN, "Some generating functions for Laguerre and Hermite polynomials," Canad. J. Math., v. 9, 1957, pp. 180-187. MR 19, 28. MR 0085363 (19:28b)
  • [4] L. CARLITZ, "Some extensions of the Mehler formula," Collect. Math., v. 21, 1970, pp. 117-130. MR 43 #5076. MR 0279354 (43:5076)
  • [5] M. E. COHEN, "On Jacobi functions and multiplication theorems for integrals of Bessel functions," J. Math. Anal. Appl. (In press.) MR 0432945 (55:5924)
  • [6] M. E. COHEN, "On expansion on problems: New classes of formulae for the classical functions," SIAM J. Math. Anal. (In press.) MR 0442305 (56:691)
  • [7] A. ERDÉLYI, "Über eine Erzeugende Funktion von Produkten Hermitescher Polynome," Math. Z., v. 44, 1938, pp. 201-211.
  • [8] E. FELDHEIM, "Développements en série de polynomes d'Hérmite et de Laguerre à l'aide des transformations de Gauss et de Hankel. I, II, III," Nederl. Akad. Wetensch Proc., v. 43, 1940, pp. 224-248, 378-389. MR 1, 232. MR 0001400 (1:232a)
  • [9] H. W. GOULD & A. T. HOPPER, "Operational formulas connected with two generalizations of Hermite polynomials," Duke Math. J., v. 29, 1962, pp. 51-63. MR 24 #A2689. MR 0132853 (24:A2689)
  • [10] I. S. GRADŠTEĬN & L. M. RYŽTK, Table of Integrals. Series, and Products, 4th ed., Fizmatgiz, Moscow, 1963; English transl., Academic Press, New York and London, 1965. MR 28 #5198; 33 #5952.
  • [11] R. P. GUPTA & G. C. JAIN, "A generalized Hermite distribution and its properties," SIAM J. Appl. Math., v. 27, 1974, pp. 359-363. MR 50 #2580. MR 0350087 (50:2580)
  • [12] G. H. HARDY, "Summation of a series of polynomials of Laguerre," J. London Math. Soc., v. 7, 1932, pp. 138-139.
  • [13] E. HILLE, "On Laguerre's series. II," Proc Nat. Acad. Sci. U.S.A., v. 12, 1926, pp. 265-269.
  • [14] J. KAMPÉ de FÉRIET, Danske Vid. Selsk. Math. Fys. Medd., v. 5, 1923, no. 2.
  • [15] E. LUKACS, Characteristic Functions, Griffin's Statistical Monographs & Courses, no. 5, Hafner, New York, 1960. MR 23 #A1392. MR 0124075 (23:A1392)
  • [16] Y. L. LUKE, The Special Functions and Their Approximations. Vols. 1,2, Math. in Sci. and Engineering, vol. 53, Academic Press, New York and London, 1969. MR 39 #3039; 40 #2909.
  • [17] F. G. MEHLER, "Ueber die Entwichlung einer Funktion von beliebig vielen Variablen nach Laplaceschen Funktionen höhrer Ordnung," J. Reine Angew. Math., v. 66, 1866, pp. 161-176.
  • [18] O. V. SARMANOV & Z. N. BRATOEVA, "Probabilistic properties of bilinear expansions of Hermite polynomials," Teor. Verojatnost. i Primenen., v. 12, 1970, pp. 520-531 = Theor. Probability Appl., v. 12, 1970, pp. 470-481. MR 35 #7372. MR 0216541 (35:7372)
  • [19] G. N. WATSON, "Notes on generating functions of polynomials: (2) Hermite polynomials," J. London Math. Soc., v. 8, 1933, pp. 194-199.
  • [20] L. WEISNER, "Generating functions for Hermite functions," Canad. J. Math., v. 11, 1959, pp. 141-147. MR 22 #786. MR 0109903 (22:786)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A65

Retrieve articles in all journals with MSC: 33A65


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1976-0419894-3
Keywords: Addition theorem, bilinear generating function, Gegenbauer polynomial, generalized function, Hermite function
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society