Reviews and Descriptions of Tables and Books
Journal:
Math. Comp. 30 (1976), 664674
Fulltext PDF Free Access
References 
Additional Information
 [1]
A. R. EDMONDS, Angular Momentum in Quantum Mechanics, Princeton Univ. Press, Princeton, N. J., 1960.
 [2]
B. KROHN, Private communication, 1975.
 [1]
Donald
E. Knuth, The art of computer programming, 2nd ed.,
AddisonWesley Publishing Co., Reading, Mass.LondonAmsterdam, 1975.
Volume 1: Fundamental algorithms; AddisonWesley Series in Computer Science
and Information Processing. MR 0378456
(51 #14624)
 [1]
D.
B. Owen (ed.), Selected tables in mathematical statistics. Vol.
I, American Mathematical Society, Providence, R. I.; Institute of
Mathematical Statistics, Statistical Laboratory, Michigan State University,
East Lansing, Mich., 1973. Second printing with revisions. MR 0408180
(53 #11946)
 [1]
I.
O. Angell, A table of totally real cubic
fields, Math. Comput. 30
(1976), no. 133, 184–187. MR 0401701
(53 #5528), http://dx.doi.org/10.1090/S00255718197604017016
 [2]
Daniel
Shanks, Corrigenda: “Calculation and
applications of Epstein zeta functions” (Math. Comp. 29 (1975),
271–287), Math. Comp.
29 (1975), no. 132, 1167. MR 0409358
(53 #13114b), http://dx.doi.org/10.1090/S00255718197504093584
 [3]
H.
J. Godwin and P.
A. Samet, A table of real cubic fields, J. London Math. Soc.
34 (1959), 108–110. MR 0100579
(20 #7009)
 [4]
Daniel
Shanks, On Gauss’s class number
problems, Math. Comp. 23 (1969), 151–163. MR 0262204
(41 #6814), http://dx.doi.org/10.1090/S00255718196902622041
 [5]
H.
Davenport and H.
Heilbronn, On the density of discriminants of cubic fields.
II, Proc. Roy. Soc. London Ser. A 322 (1971),
no. 1551, 405–420. MR 0491593
(58 #10816)
 [6]
Daniel
Shanks, New types of quadratic fields having three invariants
divisible by 3, J. Number Theory 4 (1972),
537–556. MR 0313220
(47 #1775)
 [7]
Daniel
Shanks and Peter
Weinberger, A quadratic field of prime discriminant requiring three
generators for its class group, and related theory, Acta Arith.
21 (1972), 71–87. MR 0309899
(46 #9003)
 [8]
Daniel
Shanks, Class groups of the quadratic fields
found by F. Diaz y Diaz, Math. Comp.
30 (1976), no. 133, 173–178. MR 0399039
(53 #2890), http://dx.doi.org/10.1090/S00255718197603990399
 [9]
Richard
B. Lakein, Computation of the ideal class group
of certain complex quartic fields. II, Math.
Comp. 29 (1975),
137–144. Collection of articles dedicated to Derrick Henry Lehmer on
the occasion of his seventieth birthday. MR 0444605
(56 #2955), http://dx.doi.org/10.1090/S00255718197504446054
 [1]
 A. R. EDMONDS, Angular Momentum in Quantum Mechanics, Princeton Univ. Press, Princeton, N. J., 1960.
 [2]
 B. KROHN, Private communication, 1975.
 [1]
 D. E. KNUTH, The Art of Computer Programming, v. 1, Fundamental Algorithms; v. 2, Seminumerical Algorithms; v. 3, Sorting and Searching, AddisonWesley, Reading, Mass., 19681973. MR 0378456 (51:14624)
 [1]
 THE INSTITUTE OF MATHEMATICAL STATISTICS, Editors, and H. L. HARTER & D. B. OWEN, Coeditors, Selected Tables in Mathematical Statistics, Vol. I, American Mathematical Society, Providence, R. I., second printing, 1973. (See Math. Comp., v. 29, 1975, p. 661, RMT 32.) MR 0408180 (53:11946)
 [1]
 I. O. ANGELL, "A table of totally real cubic fields," Math. Comp., v. 30, 1976, pp. 184187. MR 0401701 (53:5528)
 [2]
 DANIEL SHANKS, UMT Review 33 of I. O. Angell, "Table of complex cubic fields," Math. Comp., v. 29, 1975, pp. 661665. MR 0409358 (53:13114b)
 [3]
 H. J. GODWIN & P. A. SAMET, "A table of real cubic fields," J. London Math. Soc., v. 34, 1959, pp. 108110. MR 0100579 (20:7009)
 [4]
 DANIEL SHANKS, "On Gauss's class number problems," Math. Comp., v. 23, 1969, pp. 151163. MR 0262204 (41:6814)
 [5]
 H. DAVENPORT & H. HEILBRONN, On the density of discriminants of cubic fields. II," Proc. Roy. Soc. London Ser. A, v. 322, 1971, pp. 405420. MR 0491593 (58:10816)
 [6]
 DANIEL SHANKS, "New types of quadratic fields having three invariants divisible by 3," J. Number Theory, v. 4, 1972, pp. 537556. MR 0313220 (47:1775)
 [7]
 DANIEL SHANKS & PETER WEINBERGER, "A quadratic field of prime discriminant requiring three generators for its class group, and related theory," Acta Arith., v. 21, 1972, pp. 7187. MR 0309899 (46:9003)
 [8]
 DANIEL SHANKS, "Class groups of the quadratics fields found by F. Diaz y Diaz," Math. Comp., v. 30, 1976, pp. 173178. MR 0399039 (53:2890)
 [9]
 RICHARD B. LAKEIN, "Computation of the ideal class group of certain complex quartic fields. II," Math. Comp., v. 29, 1975, pp. 137144. MR 0444605 (56:2955)
Additional Information
DOI:
http://dx.doi.org/10.1090/S0025571876996654
PII:
S 00255718(76)996654
Article copyright:
© Copyright 1976
American Mathematical Society
