Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Dyadotropic polynomials


Author: Harvey Cohn
Journal: Math. Comp. 30 (1976), 854-862
MSC: Primary 12A45
DOI: https://doi.org/10.1090/S0025-5718-1976-0412146-7
MathSciNet review: 0412146
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Polynomials which tend to represent powers of two arise in connection with certain problems of class field theory of dihedral biquadratic fields. The availability of independent units is an immediate consequence for an infinitude of parametrized cases. An exhaustive search for such types of polynomials is made by use of computer.


References [Enhancements On Off] (What's this?)

  • [1] P. BARRUCAND & H. COHN, "On some class-fields related to primes of type $ {x^2} + 32{y^2}$," J. Reine Angew. Math., v. 262/263, 1973, pp. 400-414. MR 48 #6055. MR 0327713 (48:6055)
  • [2] H. COHN & G. COOKE, "Parametric form of an eight class field," Acta Arith., v. 30, 1976, pp. 61-71. MR 0422209 (54:10201)
  • [3] F. HALTER-KOCH & H.-J. STENDER, "Unabhängige Einheiten für die Körper $ K = {\text{Q}}(\sqrt[n]{{{D^n} \pm d)}}\;{\operatorname{mit}}\;d\vert{D^n}$," Abh. Math. Sem. Univ. Hamburg, v. 42, 1974, pp. 33-40. MR 51 #432. MR 0364177 (51:432)
  • [4] H. HASSE, Klassenkörpertheorie, Lecture Notes, Marburg, 1933, §3.
  • [5] H. HASSE, "Über eine diophantische Gleichung von Ramanujan-Nagell und ihre Verallgemeinerung," Nagoya Math. J., v. 27, 1966, pp. 77-102. MR 34 #136. MR 0200237 (34:136)
  • [6] E. L. INCE, "Cycles of reduced ideals in quadratic fields," Mathematical Tables, vol. IV, British Association for the Advancement of Science, London, 1934.
  • [7] W. NARKIEWICZ, Elementary and Analytic Theory of Algebraic Numbers, Monografie Mat., Tom 57, PWN, Warsaw, 1974, pp. 160-177, 100. MR 50 #268. MR 0347767 (50:268)
  • [8] D. SHANKS, "On Gauss's class number problems," Math. Comp., v. 23, 1969, pp. 151-163. MR 41 #6814. MR 0262204 (41:6814)
  • [9] H. WEBER, Elliptische Functionen und algebraische Zahlen, Braunschweig, 1891, pp. 376, 421.
  • [10] Y. YAMAMOTO, "Real quadratic number fields with large fundamental units," Osaka J. v. 8, 1971, pp. 261-270. MR 45 #5107. MR 0296046 (45:5107)
  • [11] H. G. ZIMMER, Computational Problems, Methods, and Results in Algebraic Number Thoery, Lecture Notes in Math., vol. 262, Springer-Verlag, Berlin and New York, 1972, pp. 35-39. MR 48 #2107. MR 0323751 (48:2107)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12A45

Retrieve articles in all journals with MSC: 12A45


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1976-0412146-7
Keywords: Biquadratic fields, units, machine computation
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society