Rational Chebyshev approximations for the inverse of the error function
Authors:
J. M. Blair, C. A. Edwards and J. H. Johnson
Journal:
Math. Comp. 30 (1976), 827830
MSC:
Primary 65D20; Secondary 33A20
MathSciNet review:
0421040
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This report presents nearminimax rational approximations for the inverse of the error function inverf x, for , with relative errors ranging down to . An asymptotic formula for the region is also given.
 [1]
L. F. SHAMPINE, "Exact solutions for concentration dependent diffusion and the inverse complementary error function," J. Franklin Inst., v. 295, 1973, pp. 239247.
 [2]
Mervin
E. Muller, An inverse method for the generation
of random normal deviates on largescale computers, Math. Tables Aids Comput. 12 (1958), 167–174. MR 0102905
(21 #1690), http://dx.doi.org/10.1090/S00255718195801029051
 [3]
E. L. BATTISTE & T. P. YEAGER, "GGNORgenerate pseudonormal random numbers," IMSL Library 3 Reference Manual, v. 1, 1974
 [4]
J.
R. Philip, The function inverfc 𝜃, Austral. J. Phys.
13 (1960), 13–20. MR 0118857
(22 #9626)
 [5]
Cecil
Hastings Jr., Approximations for digital computers, Princeton
University Press, Princeton, N. J., 1955. Assisted by Jeanne T. Hayward and
James P. Wong, Jr. MR 0068915
(16,963e)
 [6]
P. KINNUCAN & H. KUKI, A Single Precision Inverse Error Function Subroutine, Computation Center, Univ. of Chicago, 1970.
 [7]
Anthony
Strecok, On the calculation of the inverse of
the error function, Math. Comp. 22 (1968), 144–158. MR 0223070
(36 #6119), http://dx.doi.org/10.1090/S00255718196802230702
 [8]
J. H. JOHNSON & J. M. BLAIR, REMES 2A FORTRAN Program to Calculate Rational Minimax Approximations to a Given Function, Report AECL4210, Atomic Energy of Canada Limited, Chalk River, Ontario, 1973.
 [9]
I. D. HILL & S. A. JOYCE, "Algorithm 304. Normal curve integral [S15]," Comm. A.C.M., v. 10, 1967, pp. 374375.
 [10]
J. F. HART et al., Computer Approximations, Wiley, New York, 1968.
 [11]
C.
Mesztenyi and C.
Witzgall, Stable evaluation of polynomials, J. Res. Nat. Bur.
Standards Sect. B 71B (1967), 11–17. MR 0212994
(35 #3859)
 [1]
 L. F. SHAMPINE, "Exact solutions for concentration dependent diffusion and the inverse complementary error function," J. Franklin Inst., v. 295, 1973, pp. 239247.
 [2]
 M. E. MULLER, "An inverse method for the generation of random normal deviates on largescale computers," MTAC, v. 12, 1958, pp. 167174. MR 21 #1690. MR 0102905 (21:1690)
 [3]
 E. L. BATTISTE & T. P. YEAGER, "GGNORgenerate pseudonormal random numbers," IMSL Library 3 Reference Manual, v. 1, 1974
 [4]
 J. R. PHILIP, "The function inverfc ," Austral. J. Phys., v. 13, 1960, pp. 1320. MR 22 #9626. MR 0118857 (22:9626)
 [5]
 C. HASTINGS, JR. (with J. T. HAYWARD & J. P. WONG, JR.), Approximations for Digital Computers, Princeton Univ. Press, Princeton, N. J., 1955. MR 16, 963. MR 0068915 (16:963e)
 [6]
 P. KINNUCAN & H. KUKI, A Single Precision Inverse Error Function Subroutine, Computation Center, Univ. of Chicago, 1970.
 [7]
 A. J. STRECOK, "On the calculation of the inverse of the error function," Math. Comp., v. 22, 1968, pp. 144158. MR 36 #6119. MR 0223070 (36:6119)
 [8]
 J. H. JOHNSON & J. M. BLAIR, REMES 2A FORTRAN Program to Calculate Rational Minimax Approximations to a Given Function, Report AECL4210, Atomic Energy of Canada Limited, Chalk River, Ontario, 1973.
 [9]
 I. D. HILL & S. A. JOYCE, "Algorithm 304. Normal curve integral [S15]," Comm. A.C.M., v. 10, 1967, pp. 374375.
 [10]
 J. F. HART et al., Computer Approximations, Wiley, New York, 1968.
 [11]
 C. MESZTENYI & C. WITZGALL, "Stable evaluation of polynomials," J. Res. Nat Bur. Standards Sect. B, v. 71B, 1967, pp. 1117. MR 35 #3859. MR 0212994 (35:3859)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D20,
33A20
Retrieve articles in all journals
with MSC:
65D20,
33A20
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197604210407
PII:
S 00255718(1976)04210407
Keywords:
Rational Chebyshev approximations,
inverse error function,
minimal Newton form
Article copyright:
© Copyright 1976
American Mathematical Society
