Rational Chebyshev approximations for the inverse of the error function

Authors:
J. M. Blair, C. A. Edwards and J. H. Johnson

Journal:
Math. Comp. **30** (1976), 827-830

MSC:
Primary 65D20; Secondary 33A20

DOI:
https://doi.org/10.1090/S0025-5718-1976-0421040-7

MathSciNet review:
0421040

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This report presents near-minimax rational approximations for the inverse of the error function inverf *x*, for , with relative errors ranging down to . An asymptotic formula for the region is also given.

**[1]**L. F. SHAMPINE, "Exact solutions for concentration dependent diffusion and the inverse complementary error function,"*J. Franklin Inst.*, v. 295, 1973, pp. 239-247.**[2]**M. E. MULLER, "An inverse method for the generation of random normal deviates on large-scale computers,"*MTAC*, v. 12, 1958, pp. 167-174. MR**21**#1690. MR**0102905 (21:1690)****[3]**E. L. BATTISTE & T. P. YEAGER, "GGNOR-generate pseudo-normal random numbers,"*IMSL Library*3*Reference Manual*, v. 1, 1974**[4]**J. R. PHILIP, "The function inverfc ,"*Austral. J. Phys.*, v. 13, 1960, pp. 13-20. MR**22**#9626. MR**0118857 (22:9626)****[5]**C. HASTINGS, JR. (with J. T. HAYWARD & J. P. WONG, JR.),*Approximations for Digital Computers*, Princeton Univ. Press, Princeton, N. J., 1955. MR**16**, 963. MR**0068915 (16:963e)****[6]**P. KINNUCAN & H. KUKI,*A Single Precision Inverse Error Function Subroutine*, Computation Center, Univ. of Chicago, 1970.**[7]**A. J. STRECOK, "On the calculation of the inverse of the error function,"*Math. Comp.*, v. 22, 1968, pp. 144-158. MR**36**#6119. MR**0223070 (36:6119)****[8]**J. H. JOHNSON & J. M. BLAIR,*REMES*2-*A FORTRAN Program to Calculate Rational Minimax Approximations to a Given Function*, Report AECL-4210, Atomic Energy of Canada Limited, Chalk River, Ontario, 1973.**[9]**I. D. HILL & S. A. JOYCE, "Algorithm 304. Normal curve integral [S15],"*Comm. A.C.M.*, v. 10, 1967, pp. 374-375.**[10]**J. F. HART et al.,*Computer Approximations*, Wiley, New York, 1968.**[11]**C. MESZTENYI & C. WITZGALL, "Stable evaluation of polynomials,"*J. Res. Nat Bur. Standards Sect. B*, v. 71B, 1967, pp. 11-17. MR**35**#3859. MR**0212994 (35:3859)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20,
33A20

Retrieve articles in all journals with MSC: 65D20, 33A20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0421040-7

Keywords:
Rational Chebyshev approximations,
inverse error function,
minimal Newton form

Article copyright:
© Copyright 1976
American Mathematical Society