A Necessary Condition for A-Stability of Multistep Multiderivative Methods

By Rolf Jeltsch

Abstract. The region of absolute stability of multistep multiderivative methods is studied in a neighborhood of the origin. This leads to a necessary condition for A-stability. For methods where $\rho(\zeta)/\zeta$ has no roots of modulus 1 this condition can be checked very easily. For Hermite interpolatory and Adams type methods a necessary condition for A-stability is found which depends only on the error order and the number of derivatives used at (x_{n+k}, y_{n+k}).

1. Introduction and Results. A multistep method using higher derivatives for solving the initial value problem $y' = f(x, y), y(a) = \eta$ is given by

$$ \sum_{i=0}^{k} \alpha_i y_{n+i} - \sum_{j=1}^{l} h^j \sum_{i=0}^{k} \beta_{ji} f^{(j)}(x_{n+i}, y_{n+i}) = 0, \quad n = 0, 1, 2, \ldots. $$

Here, α_i, β_{ji} are real constants, $\alpha_k \neq 0$, $\sum_{i=0}^{k} |\beta_{ji}| \neq 0$, $|\alpha_0| + \sum_{j=1}^{l} |\beta_{j0}| \neq 0$, $x_n = a + nh$, $h > 0$, and

$$ f^{(1)}(x, y) = f(x, y); $$

$$ f^{(j+1)}(x, y) = \frac{\partial f^{(j)}(x, y)}{\partial x} + f(x, y) \frac{\partial f^{(j)}(x, y)}{\partial y}, \quad j = 1, 2, \ldots, l - 1. $$

It is well known that the method has order p if

$$ \rho(e^2) - \sum_{j=1}^{l} z^j \sigma_j(e^2) = \sum_{j=p+1}^{\infty} C_j z^j, \quad C_{p+1} \neq 0, $$

where $\rho(\zeta)$ and $\sigma_j(\zeta)$ are the polynomials

$$ \rho(\zeta) = \sum_{i=0}^{k} \alpha_i \zeta^i, \quad \sigma_j(\zeta) = \sum_{i=0}^{k} \beta_{ji} \zeta^i, \quad j = 1, 2, \ldots, l. $$

We shall always assume that the polynomials ρ and $\sigma_j, j = 1, 2, \ldots, l$, have no common factor. The method is convergent if and only if $p \geq 1$ and $\rho(\zeta)$ is a simple von Neumann polynomial; that is, if ζ is a root of $\rho(\zeta)$, then $|\zeta| < 1$; and if $|\zeta| = 1$, then it is a simple root (see R. Jeltsch [8]).

If the multistep method (1) is applied to the test equation $y' = \mu y, y(0) = 1, \mu$ complex, then (1) is a linear recurrence relation with constant coefficients. The corresponding characteristic equation is

Received June 23, 1975.

AMS (MOS) subject classifications (1970). Primary 65L05.

Key words and phrases. Linear k-step methods using higher derivatives, behavior of the region of absolute stability at the origin, necessary condition for A-stability, Hermite interpolatory multistep multiderivative methods, Adams-type multistep multiderivative methods.
For each \(z \), (3) has \(k \) roots \(\zeta_i(z) \), \(i = 1, 2, \ldots, k \). The set \(A = \{ z \mid |\zeta_i(z)| < 1, i = 1, 2, \ldots, k \} \) is called the region of absolute stability. Let \(\partial A = \bar{A} - A \), where \(\bar{A} \) is the closure of \(A \). A method is called \(A \)-stable if \(A \) contains the whole left-hand plane \(\Re z < 0 \).

In several articles the boundary \(\partial A \) of \(A \) has been plotted in order to determine whether a method is \(A \)-stable or not, see Brown [1], Enright [4], Jeltsch [7]. However, if all growth parameters \(\lambda_j \), given by (4), are positive, then \(\partial A \) will be extremely close to the imaginary axis for \(z \) close to 0. Roundoff errors may defeat the attempt to determine whether \(\partial A \) is in a neighborhood of \(z = 0 \) in \(H^+ = \{ z \in \mathbb{C} \mid \Re z > 0 \} \) or in \(H^- = \{ z \in \mathbb{C} \mid \Re z < 0 \} \). Our results fill this gap. In particular, we shall find a necessary condition for \(A \)-stability. It should be noted that a method which violates this condition may still behave numerically almost like an \(A \)-stable method even though it is not \(A \)-stable. In Section 2 this necessary condition for \(A \)-stability is applied to Hermite interpolatory and Adams-type multistep multiderivative methods; and it is found that these cannot be \(A \)-stable if the error order \(p \) is equal to \(2l_k + 1 \) modulo 4, where

\[
l_k = \begin{cases}
0 & \text{if } \sum_{j=1}^{l} |\beta_{jk}| = 0, \\
t & \text{if } \sum_{j=t+1}^{l} |\beta_{jk}| = 0 \text{ and } \beta_{tk} \neq 0.
\end{cases}
\]

The proofs are given in Section 3.

Let \(\zeta_j, j = 1, 2, \ldots, s \), be the roots of \(\rho(\zeta) \) with modulus 1. Let us introduce the growth parameters

(4) \[\lambda_j = \frac{\sigma_1(\zeta_j)}{\zeta_j \rho'(\zeta_j)}, \quad j = 1, 2, \ldots, s, \]

and

(5) \[\mu_j = \frac{1}{\zeta_j \rho'(\zeta_j)} \left(\sigma_2(\zeta_j) + \zeta_j \lambda_j \sigma_1'(\zeta_j) - \frac{1}{2} \zeta_j^2 \lambda_j^2 \rho''(\zeta_j) \right), \quad j = 1, 2, \ldots, s. \]

Furthermore, let the method have order \(p \geq 1 \). Then we define recursively

(6) \[c_j = \left(C_j - \sum_{i=p+1}^{j} c_{j-i} \right)/s_0, \quad j = p + 1, p + 2, \ldots, 2p, \]

where \(s_0, s_1, \ldots, s_{p-1} \) are given by

(7) \[\sum_{j=1}^{l} jz^{j-1} \sigma_j(z^2) = \sum_{i=0}^{p-1} s_i z^i + O(z^p). \]

For the disk \(\{ z \in \mathbb{C} \mid |z| < R \} \) we shall use the symbol \(D(R) \).

Theorem 1. Let the multistep method of form (1) be convergent, of order \(p \geq 1 \) and let \(\rho(\zeta) \) have \(s \) roots of modulus 1, \(\zeta_i, i = 1, 2, \ldots, s \), with \(\zeta_1 = 1 \). Let \(\lambda_i \) be real and positive, \(i = 1, 2, \ldots, s \), and define
where λ_j and μ_j are given by (4) and (5), respectively. Assume that one of the conditions (I), (II$_1$)–(II$_4$) holds, where

(I) $\delta < 0$.

(II$_1$) $\delta > 0$, p odd, $c_{p+1} (-1)^{(p+1)/2} > 0$.

(II$_2$) $\delta > 0$, p even, $c_{p+2q} (-1)^{(p/2)+q} > 0$, $c_{p+2j} = 0$, $j = 1, 2, \ldots, q-1$,

for some $q \leq p/2$.

(II$_3$) $\delta > 0$, p odd, $c_{p+1} (-1)^{(p+1)/2} < 0$.

The numbers c_j, $j = p + 1, p + 2, \ldots, 2p$, are given by (6). Then there exists a disk $D = D(R), R > 0$, such that $\gamma = \partial A \cap D$ is a continuously differentiable curve which intersects the real axis and the imaginary axis only at $z = 0$. The imaginary axis is tangent to γ at $z = 0$. γ divides D in two simply connected regions $D^- = A \cap D$ and $D^+ = D - D^-$, see Figure 1. Moreover, each of the conditions (I), (II$_3$), (II$_4$) implies that $D^- \subset \mathbb{H}^-$ while each of the conditions (II$_1$), (II$_2$) implies that $D^+ - \{0\} \subset \mathbb{H}^+$.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Absolute stability region in a neighborhood of the origin}
\end{figure}

(a) if one of the conditions (I), (II$_3$), (II$_4$) holds

(b) if one of the conditions (II$_1$), (II$_2$) holds

Remarks. 1. Using (2) and (7), one finds the explicit formulas

\[
C_n = \frac{1}{n!} \sum_{m=0}^{k} \alpha_m m^n - \sum_{j=1}^{\min\{n, k\}} \frac{1}{(n-j)!} \sum_{m=0}^{k} \beta_{jm} m^{n-j},
\]

\[
\min\{n+1, k\} \leq j \leq \min\{n, k\}
\]

and

\[
s_n = \sum_{j=1}^{\min\{n+1, k\}} \frac{j}{(n+1-j)!} \\sum_{m=0}^{k} \beta_{jm} m^{n+1-j}, \quad n = 0, 1, 2, \ldots, p - 1.
\]
Moreover, from (6), (7) and (2) follows

\[c_{p+1} = \frac{C_{p+1}}{\rho'(1)} \neq 0 \]

and

\[c_{p+2} = \left(C_{p+2} - \frac{C_{p+1}}{\rho'(1)} \left(o_1'(1) + 2o_2'(1) \right) \right) / \rho'(1). \]

2. Let \(s = 1 \). If \(p \) is odd, then Theorem 1 describes \(\partial A \) close to \(z = 0 \) in all cases since \(c_{p+1} \neq 0 \). The methods with \(p \) even and \(c_{p+2j} = 0, j = 1, 2, \ldots, p/2 \), are not covered by Theorem 1. However, there are only a few methods with this property since one has the following result by Griepentrog [6]. There exists no \(k \)-step method of form (1) with \(k \geq 2 \) and \(s = 1 \) for which \(\partial A \) lies exactly on the imaginary axis in a neighborhood of \(z = 0 \). Moreover, a one-step method of form (1) with \(p \geq 1 \) has \(\partial A \) on the imaginary axis in a neighborhood of \(z = 0 \) if and only if \(\beta_{j_1} = (-1)^{j_1} \beta_{j_0}, j = 1, 2, \ldots, l \).

THEOREM 2. It is necessary for a method to be \(A \)-stable that all growth parameters are real and nonnegative, \(\delta \geq 0 \) and either (III) or (IV) holds, where \(\delta \) is defined as in Theorem 1 and

1. \(p \) odd, \(c_{p+1}(-1)(p+1)^{1/2} > 0 \).
2. \(p \) even, either \(c_{p+2j} = 0, j = 1, 2, \ldots, p/2 \), or \(c_{p+2j}(-1)(p/2)^{1/2} + q > 0 \), \(c_{p+2j} = 0, j = 1, 2, \ldots, q-1 \), for some \(q \leq p/2 \).

Remark. This necessary condition for \(A \)-stability is very easy to check for \(s = 1 \). If \(p \) is odd, only \(c_{p+1} \) has to be calculated. If \(p \) is even one finds for most methods that \(c_{p+2} \neq 0 \); and hence, only \(c_{p+2} \) has to be calculated. The following lemma simplifies the problem of determining the sign of \(c_{p+1} \).

LEMMA. Let the multistep method using higher derivatives be convergent, then

\[\text{sign } \rho'(1) = \text{sign } \alpha_k. \]

Proof. Since the method is convergent, all roots of \(\rho(z) \) and \(\rho'(z) \) lie in the unit disk and hence the lemma holds.

2. **Application to Hermite Interpolatory and Adams Type Methods.**

Definition 1. A linear multistep method using higher derivatives of the form

\[\sum_{i=0}^{k} \alpha_i y_{n+i} - \sum_{i=0}^{k} \sum_{j=1}^{l_i} h_i \beta_{i,j} f^{(j)}(x_{n+i}, y_{n+i}) = 0 \]

is called Hermite interpolatory if the error order \(p \) is at least \(\sum_{i=0}^{k} l_i + k - 1 \).

In Jeltsch [9] the following theorem is proved.

THEOREM 3. Let a set of nonnegative integers \(l_0, l_1, \ldots, l_k \) with \(\max_{i=0,1,\ldots,k} l_i = l > 0 \) be given. Then there exists a unique Hermite interpolatory multistep method with the given \(l_i, \alpha_k \neq 0 \) and \(\beta_{i,k} \neq 0 \). The error order is \(p = \sum_{i=0}^{k} l_i + k - 1 \) and one has

\[\text{sign } C_{p+1} = (-1)^{l_k} \text{sign } \alpha_k. \]

A similar result can be established for Adams-type methods which are defined as follows.
Definition 2. A linear multistep method using higher derivatives is said to be of Adams type if it is of the form

\[y_{n+k} - y_{n+k-1} - \sum_{i=0}^{k} \frac{h^i}{i!} f^{(i)}(x_{n+i}, y_{n+i}) = 0, \]

and its error order \(p \) is at least \(\sum_{i=0}^{k} l_i \).

Theorem 4. Let a set of nonnegative integers \(l_0, l_1, \ldots, l_k \) with \(\max l_i = l > 0 \) be given. Then there exists a unique Adams-type multistep method with the given \(l_i \) and \(\beta_{i+k} \neq 0 \). The error order is \(p = \sum_{i=0}^{k} l_i \) and one has

\[\text{sign} C_{p+1} = (-1)^{l_k} \text{sign} \alpha_k. \]

Using Theorems 2, 3, 4 and the Lemma, one then finds immediately the

Theorem 5. A convergent linear multistep method using higher derivatives which is of Adams type or Hermite interpolatory cannot be \(A \)-stable if the error order \(p \) satisfies

\[p = 2k + 1 \mod 4. \]

Example 1. Brown's methods are interpolatory with

\[l_0 = l_1 = \cdots = l_{k-1} = 0, \quad l_k = l. \]

Hence, the methods are not \(A \)-stable if \(p = 2l + 1 \mod 4 \). Especially the methods with \(k = 4, l = 2, p = 5; k = 5, l = 3, p = 7 \) and \(k = 6, l = 4, p = 9 \) are not \(A \)-stable. The method with \(p = 10, k = 7 \) and \(l = 4 \) is not covered by Theorem 5. However, A. H. Sipilä has computed \(C_{11} \) and \(C_{12} \) using rational arithmetic and it was found that

\[c_{12} = (C_{11}/3p'(1)) (-4.653007 \ldots). \]

Hence, by our Lemma and Theorem 3, one has \(c_{12}(-1)^{p/2+1} < 0 \). Hence, by Theorem 2 this method is not \(A \)-stable. Note that in Brown [1] the plots of \(\partial A \) lead to the wrong conclusion that these methods are \(A \)-stable.

Example 2. Consider the linear one-step methods using higher derivatives which are based on the \((r, l)\) entry of the Padé table of \(\exp(x) \), see Jeltsch [8] or Ehle [3, p. 89]. These methods have order \(p = r + l \) and are interpolatory. It is known, see Ehle [3], that the methods are \(A \)-stable for \(r = l, l-1, l-2 \). From Theorem 5 it follows that the methods are not \(A \)-stable for \(r = l-3 \). This result has been found by Ehle [3].

Example 3. Enright's second derivative methods are of Adams type with \(l_0 = l_1 = \cdots = l_{k-1} = 1 \) and \(l_k = 2 \), with order \(p = k + 2 \), see Enright [4]. Using the Lemma and Theorems 1 and 4, one finds that for \(k = 3 \mod 4 \) the region of absolute stability behaves at the origin as given in Figure 1a and for \(k = 5 \mod 4 \) as given in Figure 1b.

3. Proof of the Results.

Proof of Theorem 1. The algebraic function \(\xi(z) \) which satisfies (3) has \(k \) branches \(\xi_j(z) \) with \(\xi_j(0) = \xi_j, j = 1, 2, \ldots, k \). Since \(|\xi_j(z)| < 1 \) for \(j = s + 1, s + 2, \ldots, k \) there exists a \(D(R_1) \), \(R_1 > 0 \) such that \(|\xi_j(z)| < 1 \) for all \(z \in D(R_1) \),
\[j = s + 1, s + 2, \ldots, k. \quad \xi_j(0), j = 1, 2, \ldots, s, \] are simple zeros of \(\rho(\xi) \); and hence, there exists a disk \(D(R_2), 0 < R_2 < R_1, \) such that the branches \(\xi_j(z) \) are analytic in \(D(R_2). \) By the method of undetermined coefficients one finds
\begin{equation}
(12) \quad \xi_j(z) = \xi_j(0)(1 + \lambda_j z + \mu_j z^2 + O(z^3)), \quad j = 1, 2, \ldots, s;
\end{equation}
and hence,
\begin{equation}
(13) \quad \frac{d\xi_j(z)}{dz} \bigg|_{z=0} = \xi_j(0)\lambda_j \neq 0, \quad j = 1, 2, \ldots, s.
\end{equation}

Hence, there exists an \(R_3, 0 < R_3 < R_2, \) such that the mapping \(\xi_j(z): z \to \xi = \xi_j(z) \) is one to one on \(z \in D(R_3). \) Moreover, \(R_3 \) can be chosen so small that the curves \(\gamma^{(l)} = \{z \in D(R_3) \mid |\xi_j(z)| = 1\} \) are continuously differentiable. Clearly, \(\{0\} \in \gamma^{(l)} \) and from (13) it follows that the imaginary axis is tangent to \(\gamma^{(l)} \) at \(z = 0. \) If \(i \neq j, \) then either \(\gamma^{(l)} \cap \gamma^{(l)} \) is a finite set or \(\gamma^{(l)} \cap \gamma^{(l)} \) is a continuous curve which contains \(z = 0. \) Hence, there exists \(\tilde{R}, 0 < \tilde{R} < R_3, \) such that either \(\gamma_j \equiv \gamma_i \) and \(\gamma_j \subseteq [\tilde{R}, \tilde{R}] = \{0\} \) for \(j = 1, 2, \ldots, s, \) where \(\gamma_j = D(\tilde{R}) \cap \gamma^{(l)}. \) Each \(\gamma_j \) separates \(D(\tilde{R}) \) in the two sets \(D_j^- = \{z \in D(\tilde{R}) \mid |\xi_j(z)| < 1\} \) and \(D_j^+ = \{z \in D(\tilde{R}) \mid |\xi_j(z)| > 1\}. \) Clearly, \((-\tilde{R}, 0) \subseteq D_j^- \), \(j = 1, 2, \ldots, s. \) We distinguish now two cases:

(i) Consider \(\xi_j(z), j = 2, 3, \ldots, s. \) With \(z = iy, y \in (-\tilde{R}, \tilde{R}), \) one finds from (12)
\begin{equation}
(14) \quad |\xi_j(iy)| = |1 - y^2 \text{Re}\mu_j + i(\lambda_j y - y^2 \text{Im}\mu_j) + O(y^3)|
\end{equation}
\begin{equation}
= \sqrt{1 - y^2(2\text{Re}\mu_j - \lambda_j^2) + O(y^3))}.
\end{equation}

(ii) Consider \(\xi_1(z). \) It is well known, see, e.g. Gear [5] that \(\xi_1(z) - e^z = O(z^{p+1}). \) Since \(\xi_1(z) \) is analytic at the origin, we can write
\begin{equation}
(15) \quad \xi_1(z) = e^z \left(1 - \sum_{j=p+1}^{2p} c_j z^j + O(z^{2p+1}) \right).
\end{equation}

If one substitutes (15) in (3) and uses (2), one finds easily that \(c_j, j = p + 1, p + 2, \ldots, 2p, \) are determined by (6) and (7). Note that \(c_j \) is a real number. Let \(p \) be odd. Then \(c_{p+1}i^{p+1} = c_{p+1}(-1)(p+1)/2 \) is real and nonzero. Hence we find for \(z = iy, y \) real,
\begin{equation}
(16) \quad |\xi_1(iy)| = |e^{iy}| |1 - c_{p+1}i^{p+1}y^{p+1} + O(y^{p+2})|
\end{equation}
\begin{equation}
= \sqrt{1 - 2c_{p+1}(-1)(p+1)/2 y^{p+1} + O(y^{p+2})} \quad \text{for } p \text{ odd.}
\end{equation}

Let \(p \) be even. Then \(c_{p+2j}i^{p+2j} = c_{p+2j}(-1)(p/2)+j \) is real for \(j = 1, 2, \ldots, p/2. \) Hence, we find for \(z = iy, y \) real,
\begin{equation}
(17) \quad |\xi_1(iy)| = |e^{iy}| \left| 1 - \sum_{j=1}^{p/2} c_{p+2j}i^{p+2j}y^{p+2j} \right|
\end{equation}
\begin{equation}
= \sqrt{1 - 2 \sum_{j=0}^{(p/2)-1} c_{p+2j+1}i^{p+2j+1}y^{p+2j+1} + O(y^{2p+1})} \quad \text{for } p \text{ even.}
\end{equation}
Assume now that condition (I) holds. Then it follows from (14) that there exists \(R, 0 < R < \tilde{R} \), such that \(|\xi_j(i\psi)| > 1 \) for \(y \) real, \(0 < |y| < R \) for at least one \(j \in \{2, 3, \ldots, s\} \). Therefore, \(D^- = A \cap D(R) = \bigcap_{j=1}^s D_j^+ \cap D(R) \subset H^- \).

If (II_1), (II_2), respectively, hold then by (16), (17) and (14) there exists \(R, 0 < R < \tilde{R} \), such that \(|\xi_j(i\psi)| < 1 \) and \(|\xi_j(i\psi)| < 1, j = 2, 3, \ldots, s \), for \(y \) real, \(0 < |y| < R \). Therefore, \(D^+ = \bigcup_{j=1}^s D_j^+ \cap D(R) \) satisfies \(D^+ - \{0\} \subset H^+ \) since \(D_j^+ \cap D(R) - \{0\} \subset H^+ \). Similarly, one finds that (II_3), (II_4) imply \(D^- \subset H^- \). This completes the proof of Theorem 1.

Proof of Theorem 2. Let \(\lambda_j = de^{i\phi}, d > 0, \phi \in (0, 2\pi) \). Clearly,

\[
\psi = \frac{3\pi}{2} - \frac{\phi}{2} \in \left(\frac{\pi}{2}, \frac{3\pi}{2} \right) \quad \text{and} \quad \psi + \phi \in \left(\frac{3\pi}{2}, \frac{5\pi}{2} \right).
\]

Hence, using (12), one finds

\[
|\xi_j(re^{i\psi})| = |1 + rde^{i(\phi + \psi)} + O(r^2)| > 1
\]

for all \(r > 0, r \) sufficiently small. Therefore, the method is not \(A \)-stable. Let \(\lambda_j \geq 0, j = 1, 2, \ldots, s, \) and \(\delta < 0 \). From (14) follows immediately that the method is not \(A \)-stable. Similarly, using (16) and (17) one finds that (III), (IV) are necessary for \(A \)-stability. This establishes Theorem 2.

Proof of Theorem 4. In Jeltsch [9] it is shown that to given nonnegative integers \(l_0, l_1, \ldots, l_k \) with max \(l_i = l > 0 \) there exists a unique Adams-type method with the given \(l_i, \beta_{jk} \neq 0 \) and that the error order \(p = \Sigma_{i=0}^k l_i \). Hence, it remains to show that

\[
\text{sign} C_{p+1} = (-1)^l \text{sign} \alpha_k.
\]

To show this we construct the method explicitly. Let \(P(x) \) be the interpolation polynomial of degree \(\Sigma_{i=0}^k l_i - 1 \) which satisfies

\[
P^{(j-1)}(x_i) = y^{(j)}(x_{n+i}, y_{n+i}), \quad j = 1, 2, \ldots, l_i, i = 0, 1, 2, \ldots, k.
\]

The multistep method is obtained by setting

\[
y_{n+k} - y_{n+k-1} = \int_{x_{n+k-1}}^{x_{n+k}} P(x) \, dx.
\]

To find the error order and \(C_{p+1} \) we apply the method given by (19) to a sufficiently smooth function \(y(x) \). Clearly,

\[
y'(x) - P(x) = f^*(x) \prod_{i=0}^k (x - x_{n+i})^{l_i},
\]

where \(f^*(x) \) is the generalized divided difference of the function \(y'(x) \) on the set

\[
S = \{x, x_n, x_{n+1}, \ldots, x_n, x_{n+1}, \ldots, x_{n+1}, x_{n+1}, \ldots, x_{n+k}, x_{n+k}, \ldots, x_{n+k}\},
\]

see e.g. Conte and de Boor [2, p. 223]. Hence,
\[
\int_{x_{n+k-1}}^{x_{n+k}} (y'(x) - P(x)) \, dx = \int_{x_{n+k-1}}^{x_{n+k}} f^*(x) \prod_{i=0}^{k} (x - x_{n+i})^{l_i} \, dx
\]

\[
= f^*(z) \int_{x_{n+k-1}}^{x_{n+k}} \prod_{i=0}^{k} (x - x_{n+i})^{l_i} \, dx,
\]

since the factor \(\prod_{i=0}^{k} (x - x_{n+i})^{l_i} \) does not change sign in the interval \([x_{n+k-1}, x_{n+k}]\); and hence, the second mean value theorem of the integral calculus can be applied, \(z \in [x_{n+k-1}, x_{n+k}] \). But \(f^*(z) = 1/((p+1)!) (x^{p+1}(\eta), \) where \(\eta \in [x_n, x_{n+k}] \); and hence,

(21) \[
\int_{x_{n+k-1}}^{x_{n+k}} (y'(x) - P(x)) \, dx = Kh^{p+1} y^{(p+1)}(\eta),
\]

where

(22) \[
K = \frac{1}{(p+1)!} \int_{0}^{1} \prod_{i=0}^{k} (s + k - 1 - i)^{l_i} \, ds.
\]

Using (21), it is easy to see that the method given by (19) is of error order \(p \) and that \(C_{p+1} = K \). From (22) follows that \(\text{sign} \, C_{p+1} = (-1)^k \). The proof of Theorem 4 is complete since there exists exactly one Adams-type method.

Acknowledgement. Part of this work has been done while the author attended a research seminar at the University of Victoria. It is a pleasure to thank the participants of the seminar, especially A. H. Sipilä and R. Skeel, for stimulating discussions. Moreover I would like to thank A. H. Sipilä for computing the \(C_i \)'s for Brown's methods on the computer of the University of Waterloo.

Department of Mathematics
University of Kentucky
Lexington, Kentucky 40506

