Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A note on extended Gaussian quadrature rules


Author: Giovanni Monegato
Journal: Math. Comp. 30 (1976), 812-817
MSC: Primary 65D30
DOI: https://doi.org/10.1090/S0025-5718-1976-0440878-3
MathSciNet review: 0440878
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Extended Gaussian quadrature rules of the type first considered by Kronrod are examined. For a general nonnegative weight function, simple formulas for the computation of the weights are given, together with a condition for the positivity of the weights associated with the new nodes. Examples of nonexistence of these rules are exhibited for the weight functions $ {(1 - {x^2})^{\lambda - {\raise0.5ex\hbox{$\scriptstyle 1$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}},{e^{ - {x^2}}}$ and $ {e^{ - x}}$. Finally, two examples are given of quadrature rules which can be extended repeatedly.


References [Enhancements On Off] (What's this?)

  • [1] M. M. CHAWLA, "Error bounds for the Gauss-Chebyshev quadrature formula of the closed type," Math. Comp., v. 22, 1968, pp. 889-891. MR 39 #1113. MR 0239756 (39:1113)
  • [2] P. J. DAVIS & P. RABINOWITZ, Methods of Numerical Integration, Academic Press, New York, 1975. MR 0448814 (56:7119)
  • [3] A. S. KRONROD, Nodes and Weights for Quadrature Formulae. Sixteen-Place Tables, "Nauka", Moscow, 1964; English transl., Consultants Bureau, New York, 1965. MR 32 #597, #598. MR 0183116 (32:598)
  • [4] T. N. L. PATTERSON, "The optimum addition of points to quadrature formulae," Math. Comp., v. 22, 1968, pp. 847-856; Addendum, ibid., v. 22, 1968, no. 104, loose microfiche suppl. C1-C11. MR 39 #3701. MR 0242370 (39:3701)
  • [5] T. N. L. PATTERSON, "Algorithm 468-Algorithm for automatic numerical integration over a finite interval," Comm. ACM, v. 16, 1973, pp. 694-699.
  • [6] R. PIESSENS, "An algorithm for automatic integration," Angewandte Informatik, v. 9, 1973, pp. 399-401.
  • [7] Ju. S. RAMSKIĬ, "The improvement of a certain quadrature formula of Gauss type," Vyčisl. Prikl. Mat. (Kiev), Vyp. 22, 1974, pp. 143-146. (Russian) MR 50 #6121. MR 0353638 (50:6121)
  • [8] W. SQUIRE, Integration for Engineers and Scientists, American Elsevier, New York, 1970.
  • [9] G. SZEGÖ, "Über gewisse orthogonale Polynome, die zu einer oszillierenden Belegungsfunktion gehören," Math. Ann., v. 110, 1934, pp. 501-513. MR 1512952

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65D30

Retrieve articles in all journals with MSC: 65D30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1976-0440878-3
Article copyright: © Copyright 1976 American Mathematical Society

American Mathematical Society