Dissipative two-four methods for time-dependent problems

Authors:
David Gottlieb and Eli Turkel

Journal:
Math. Comp. **30** (1976), 703-723

MSC:
Primary 65M05

DOI:
https://doi.org/10.1090/S0025-5718-1976-0443362-6

MathSciNet review:
0443362

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A generalization of the Lax-Wendroff method is presented. This generalization bears the same relationship to the two-step Richtmyer method as the Kreiss-Oliger scheme does to the leapfrog method. Variants based on the MacCormack method are considered as well as extensions to parabolic problems. Extensions to two dimensions are analyzed, and a proof is presented for the stability of a Thommen-type algorithm. Numerical results show that the phase error is considerably reduced from that of second-order methods and is similar to that of the Kreiss-Oliger method. Furthermore, the (2, 4) dissipative scheme can handle shocks without the necessity for an artificial viscosity.

**[1]**S. Abarbanel, D. Gottlieb, and E. Turkel,*Difference schemes with fourth order accuracy for hyperbolic equations*, SIAM J. Appl. Math.**29**(1975), no. 2, 329–351. MR**0388794**, https://doi.org/10.1137/0129029**[2]**S. Z. BURSTEIN, "High order accurate difference methods in hydrodynamics,"*Nonlinear Partial Differential Equations*, W. F. Ames, Editor, Academic Press, New York, 1967, pp. 279-290. MR**36**#510.**[3]**W. P. CROWLEY, "Numerical advection experiments,"*Monthly Weather Review*, v. 96, 1968, pp. 1-11.**[4]**B. Fornberg,*On the instability of leap-frog and Crank-Nicolson approximations of a nonlinear partial differential equation*, Math. Comp.**27**(1973), 45–57. MR**0395249**, https://doi.org/10.1090/S0025-5718-1973-0395249-2**[5]**J. GAZDAG, "Numerical convective schemes based on accurate computation of space derivatives,"*J. Computational Phys.*, v. 13, 1973, pp. 100-113.**[6]**J. P. GERRITY, JR., R. P. McPHERSON & P. D. POLGER, "On the efficient reduction of truncation error in numerical prediction models,"*Monthly Weather Review*, v. 100, 1972, pp. 637-643.**[7]**M. K. Gol′dberg,*Multigraphs with a chromatic index that is nearly maximal*, Diskret. Analiz**23**(1973), 3–7, 72 (Russian). A collection of articles dedicated to the memory of Vitaliĭ Konstantinovič Korobkov. MR**0354429****[8]**David Gottlieb,*Strang-type difference schemes for multidimensional problems*, SIAM J. Numer. Anal.**9**(1972), 650–661. MR**0314274**, https://doi.org/10.1137/0709054**[9]**Heinz-Otto Kreiss and Joseph Oliger,*Comparison of accurate methods for the integration of hyperbolic equations*, Tellus**24**(1972), 199–215 (English, with Russian summary). MR**0319382****[10]**H.-O. KREISS & J. OLIGER,*Methods for the Approximate Solution of Time Dependent Problems*, Global Atmospheric Research Programme Publications Series, no. 10, 1973.**[11]**Peter D. Lax and Burton Wendroff,*Difference schemes for hyperbolic equations with high order of accuracy*, Comm. Pure Appl. Math.**17**(1964), 381–398. MR**0170484**, https://doi.org/10.1002/cpa.3160170311**[12]**Alain Lerat and Roger Peyret,*Noncentered schemes and shock propagation problems*, Internat. J. Comput. & Fluids**2**(1974), no. 1, 35–52. MR**0363148**, https://doi.org/10.1016/0045-7930(74)90004-8**[13]**R. W. MacCORMACK,*Numerical Solution of the Interaction of a Shock Wave with a Laminar Boundary Layer*, Proc. 2nd Internat. Conf. on Numerical Methods in Fluid Dynamics (M. Holt, Editor), Springer-Verlag, Lecture Notes in Phys., vol. 8, 1970, pp. 151-163. MR**43**#4216.**[14]**G. R. McGuire and J. Ll. Morris,*A class of second-order accurate methods for the solution of systems of conservation laws*, J. Computational Phys.**11**(1973), 531–549. MR**0331808****[15]**G. I. Marchuk,*On the theory of the splitting-up method*, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970) (Proc. Sympos., Univ. of Maryland, College Park, Md., 1970) Academic Press, New York, 1971, pp. 469–500. MR**0284004****[16]**Joseph Oliger,*Fourth order difference methods for the initial boundary-value problem for hyperbolic equations*, Math. Comp.**28**(1974), 15–25. MR**0359344**, https://doi.org/10.1090/S0025-5718-1974-0359344-7**[17]**Robert D. Richtmyer and K. W. Morton,*Difference methods for initial-value problems*, Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4, Interscience Publishers John Wiley & Sons, Inc., New York-London-Sydney, 1967. MR**0220455****[18]**K. V. Roberts and N. O. Weiss,*Convective difference schemes*, Math. Comp.**20**(1966), 272–299. MR**0198702**, https://doi.org/10.1090/S0025-5718-1966-0198702-6**[19]**Gilbert Strang,*On the construction and comparison of difference schemes*, SIAM J. Numer. Anal.**5**(1968), 506–517. MR**0235754**, https://doi.org/10.1137/0705041**[20]**Hans U. Thommen,*Numerical integration of the Navier-Stokes equations*, Z. Angew. Math. Phys.**17**(1966), 369–384 (English, with German summary). MR**0205560**, https://doi.org/10.1007/BF01594529**[21]**E. Turkel,*Symmetric hyperbolic difference schemes and matrix problems*, Linear Algebra and Appl.**16**(1977), no. 2, 109–129. MR**0464603****[22]**Eli Turkel,*Composite methods for hyperbolic equations*, SIAM J. Numer. Anal.**14**(1977), no. 4, 744–759. MR**0443365**, https://doi.org/10.1137/0714051**[23]**Lars B. Wahlbin,*A dissipative Galerkin method for the numerical solution of first order hyperbolic equations*, Mathematical aspects of finite elements in partial differential equations (Proc. Sympos., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1974), Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York, 1974, pp. 147–169. Publication No. 33. MR**0658322**

Retrieve articles in *Mathematics of Computation*
with MSC:
65M05

Retrieve articles in all journals with MSC: 65M05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1976-0443362-6

Article copyright:
© Copyright 1976
American Mathematical Society