On the condition number of local bases for piecewise cubic polynomials

Author:
J. M. Varah

Journal:
Math. Comp. **31** (1977), 37-44

MSC:
Primary 65F35

MathSciNet review:
0428699

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The condition number of the Gram matrix associated with piecewise polynomial finite element bases is discussed in general, and computed explicitly for cubic splines and cubic Hermite polynomials. In the latter case, we discuss the inherent ambiguity in the basis, and find the minimum condition number.

**[1]**Carl de Boor,*On calculating with 𝐵-splines*, J. Approximation Theory**6**(1972), 50–62. Collection of articles dedicated to J. L. Walsh on his 75th birthday, V (Proc. Internat. Conf. Approximation Theory, Related Topics and their Applications, Univ. Maryland, College Park, Md., 1970). MR**0338617****[2]**Martin H. Schultz,*Spline analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1973. Prentice-Hall Series in Automatic Computation. MR**0362832****[3]**Gilbert Strang and George J. Fix,*An analysis of the finite element method*, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1973. Prentice-Hall Series in Automatic Computation. MR**0443377****[4]**I. J. Schoenberg,*Cardinal interpolation and spline functions*, J. Approximation Theory**2**(1969), 167–206. MR**0257616****[5]**G. E. Forsythe and E. G. Straus,*On best conditioned matrices*, Proc. Amer. Math. Soc.**6**(1955), 340–345. MR**0069585**, 10.1090/S0002-9939-1955-0069585-4

Retrieve articles in *Mathematics of Computation*
with MSC:
65F35

Retrieve articles in all journals with MSC: 65F35

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1977-0428699-X

Article copyright:
© Copyright 1977
American Mathematical Society