Onestep piecewise polynomial multiple collocation methods for initial value problems
Author:
J. P. Hennart
Journal:
Math. Comp. 31 (1977), 2436
MSC:
Primary 65L05
MathSciNet review:
0431686
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: New methods are proposed for the numerical solution of systems of firstorder differential equations. On each subinterval of a given mesh of size h, a polynomial of degree l is constructed, its parameters being determined by a multiple collocation technique. The resulting piecewise polynomial approximation is of order at the mesh points and between them. In addition, the jth derivatives of the approximation on each subinterval provide approximations of order , . Some of the methods proposed are shown to be Astable or even strongly Astable.
 [1]
George
D. Andria, George
D. Byrne, and David
R. Hill, Natural spline block implicit methods, Nordisk
Tidskr. Informationsbehandling (BIT) 13 (1973),
131–144. MR 0323110
(48 #1468)
 [2]
George
D. Andria, George
D. Byrne, and David
R. Hill, Integration formulas and schemes based
on 𝑔splines, Math. Comp. 27 (1973), 831–838;
addendum, ibid. 27 (1973), no. 124, loose microfiche supplement,
A1–C4. MR
0339460 (49 #4219), http://dx.doi.org/10.1090/S00255718197303394605
 [3]
J. H. ARGYRIS & D. W. SCHARPF, "Finite elements in time and space," J. Royal Aeronautical Soc., v. 73, 1969, pp. 10411044.
 [4]
Garrett
Birkhoff and Richard
S. Varga, Discretization errors for wellset Cauchy problems.
I, J. Math. and Phys. 44 (1965), 1–23. MR 0179952
(31 #4189)
 [5]
J. C. BRUCH & G. ZYVOLOSKI, "Finite element solution of unsteady and unsaturated flow in porous media," The Mathematics of Finite Elements and Applications, J. R. Whiteman (Editor), Academic Press, London and New York, 1973, pp. 201211.
 [6]
George
D. Byrne and Donald
N. H. Chi, Linear multistep formulas based on
𝑔splines, SIAM J. Numer. Anal. 9 (1972),
316–324. MR 0311111
(46 #10207)
 [7]
E.
David Callender, Single step methods and low order splines for
solutions of ordinary differential equations, SIAM J. Numer. Anal.
8 (1971), 61–66. MR 0315897
(47 #4446)
 [8]
Philip
J. Davis, Interpolation and approximation, Blaisdell
Publishing Co. Ginn and Co. New YorkTorontoLondon, 1963. MR 0157156
(28 #393)
 [9]
Germund
G. Dahlquist, A special stability problem for linear multistep
methods, Nordisk Tidskr. InformationsBehandling 3
(1963), 27–43. MR 0170477
(30 #715)
 [10]
Jim
Douglas Jr. and Todd
Dupont, Galerkin methods for parabolic equations, SIAM J.
Numer. Anal. 7 (1970), 575–626. MR 0277126
(43 #2863)
 [11]
Byron
L. Ehle, 𝐴stable methods and Padé approximations to
the exponential, SIAM J. Math. Anal. 4 (1973),
671–680. MR 0331787
(48 #10119)
 [12]
G.
Fix and N.
Nassif, On finite element approximations to timedependent
problems, Numer. Math. 19 (1972), 127–135. MR 0311122
(46 #10218)
 [13]
J. P. HENNART, "Piecewise polynomials for point and space kinetics with variable reactivity," Trans. Amer. Nuclear Soc., v. 19, 1974, pp. 179180.
 [14]
J. P. HENNART, "Piecewise polynomial multiple collocation methods for initial value problems," Notas de Matemática y Simposia, v. 2, Sociedad Matemática Mexicana. (To appear.)
 [15]
Peter
Henrici, Discrete variable methods in ordinary differential
equations, John Wiley & Sons, Inc., New YorkLondon, 1962. MR 0135729
(24 #B1772)
 [16]
Bernie
L. Hulme, Piecewise polynomial Taylor methods for initial value
problems, Numer. Math. 17 (1971), 367–381. MR 0298953
(45 #8002)
 [17]
Bernie
L. Hulme, Onestep piecewise polynomial Galerkin
methods for initial value problems, Math.
Comp. 26 (1972),
415–426. MR 0321301
(47 #9834), http://dx.doi.org/10.1090/S00255718197203213012
 [18]
Bernie
L. Hulme, Discrete Galerkin and related onestep
methods for ordinary differential equations, Math. Comp. 26 (1972), 881–891. MR 0315899
(47 #4448), http://dx.doi.org/10.1090/S00255718197203158998
 [19]
P.
M. Hummel and C.
L. Seebeck Jr., A generalization of Taylor’s expansion,
Amer. Math. Monthly 56 (1949), 243–247. MR 0028907
(10,516i)
 [20]
C. M. KANG & K. F. HANSEN, "Finite element methods for reactor analysis," Nuclear Sci. and Engrg., v. 51, 1973, pp. 456495.
 [21]
Frank
R. Loscalzo and Thomas
D. Talbot, Spline function approximations for solutions of ordinary
differential equations, SIAM J. Numer. Anal. 4
(1967), 433–445. MR 0221756
(36 #4808)
 [22]
Frank
R. Loscalzo, An introduction to the application of spline functions
to initial value problems, Theory and Applications of Spline Functions
(Proceedings of Seminar, Math. Research Center, Univ. of Wisconsin,
Madison, Wis., 1968) Academic Press, New York, 1969,
pp. 37–64. MR 0240989
(39 #2334)
 [23]
J. T. ODEN, "A general theory of finite elements. Part II, Applications," Internat. J. Numer. Methods Engrg., v. 1, 1969, pp. 247259.
 [24]
Harvey
S. Price and Richard
S. Varga, Error bounds for semidiscrete Galerkin approximations of
parabolic problems with applications to petroleum reservoir mechanics,
Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos.
Appl. Math., Durham, N.C., 1968) Amer. Math. Soc., Providence, R.I.,
1970, pp. 74–94. MR 0266452
(42 #1358)
 [25]
Blair
Swartz and Burton
Wendroff, Generalized finitedifference
schemes, Math. Comp. 23 (1969), 37–49. MR 0239768
(39 #1125), http://dx.doi.org/10.1090/S00255718196902397687
 [26]
Richard
S. Varga, On higher order stable implicit methods for solving
parabolic partial differential equations, J. Math. and Phys.
40 (1961), 220–231. MR 0140191
(25 #3613)
 [27]
G. WARZEE, "Finite element analysis of transient heat conduction. Application of the weighted residual process," Comput. Methods Appl. Mech. Engrg., v. 3, 1974, pp. 255268.
 [28]
Olof
B. Widlund, A note on unconditionally stable linear multistep
methods, Nordisk Tidskr. InformationsBehandling 7
(1967), 65–70. MR 0215533
(35 #6373)
 [29]
K.
Wright, Some relationships between implicit RungeKutta,
collocation Lanczos 𝜏 methods, and their stability properties,
Nordisk Tidskr. Informationsbehandling (BIT) 10 (1970),
217–227. MR 0266439
(42 #1345)
 [30]
O. C. ZIENKIEWICZ & C. J. PAREKH, "Transient field problems two and three dimensional analysis by isoparametric finite elements," Internat. J. Numer. Methods Engrg., v. 2, 1970, pp. 6171.
 [31]
O.
C. Zienkiewicz, The finite element method in engineering
science, McGrawHill, LondonNew YorkDüsseldorf, 1971. The
second, expanded and revised, edition of The finite element method in
structural and continuum mechanics. MR 0315970
(47 #4518)
 [1]
 G. D. ANDRIA, G. D. BYRNE & D. R. HILL, "Natural spline block implicit methods," BIT, v. 13, 1973, pp. 131144. MR 48 #1468. MR 0323110 (48:1468)
 [2]
 G. D. ANDRIA, G. D. BYRNE & D. R. HILL, "Integration formulas and schemes based on gsplines," Math. Comp., v. 27, 1973, pp. 831838; addendum, ibid., microfiche supplement A1C4. MR 49 #4219. MR 0339460 (49:4219)
 [3]
 J. H. ARGYRIS & D. W. SCHARPF, "Finite elements in time and space," J. Royal Aeronautical Soc., v. 73, 1969, pp. 10411044.
 [4]
 G. BIRKHOFF & R. S. VARGA, "Discretization errors for wellset Cauchy problems. I," J. Math. and Phys., v. 44, 1965, pp. 123. MR 31 #4189. MR 0179952 (31:4189)
 [5]
 J. C. BRUCH & G. ZYVOLOSKI, "Finite element solution of unsteady and unsaturated flow in porous media," The Mathematics of Finite Elements and Applications, J. R. Whiteman (Editor), Academic Press, London and New York, 1973, pp. 201211.
 [6]
 G. D. BYRNE & D. N. H. CHI, "Linear multistep formulas based on gsplines," SIAM J. Numer. Anal., v. 9, 1972, pp. 316324. MR 46 #10207. MR 0311111 (46:10207)
 [7]
 E. D. CALLENDER, "Single step methods and low order splines for solutions of ordinary differential equations," SIAM J. Numer. Anal., v. 8, 1971, pp. 6166. MR 47 #4446. MR 0315897 (47:4446)
 [8]
 P. J. DAVIS, Interpolation and Approximation, Blaisdell, New York, 1965. MR 0157156 (28:393)
 [9]
 G. G. DAHLQUIST, "A special stability problem for linear multistep methods," BIT, v. 3, 1963, pp. 2743. MR 30 #715. MR 0170477 (30:715)
 [10]
 J. DOUGLAS, JR. & T. DUPONT, "Galerkin methods for parabolic equations", SIAM J. Numer. Anal., v. 7, 1970, pp. 575626. MR 43 #2863. MR 0277126 (43:2863)
 [11]
 B. L. EHLE, "Astable methods and Padé approximations to the exponential," SIAM J. Math. Anal., v. 4, 1973, pp. 671680. MR 48 #10119. MR 0331787 (48:10119)
 [12]
 G. FIX & N. NASSIF, "On finite element approximations to timedependent problems," Numer. Math., v. 19, 1972, pp. 127135. MR 46 #10218. MR 0311122 (46:10218)
 [13]
 J. P. HENNART, "Piecewise polynomials for point and space kinetics with variable reactivity," Trans. Amer. Nuclear Soc., v. 19, 1974, pp. 179180.
 [14]
 J. P. HENNART, "Piecewise polynomial multiple collocation methods for initial value problems," Notas de Matemática y Simposia, v. 2, Sociedad Matemática Mexicana. (To appear.)
 [15]
 P. HENRICI, Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York, 1962. MR 24 #B1772. MR 0135729 (24:B1772)
 [16]
 B. L. HULME, "Piecewise polynomial Taylor methods for initial value problems," Numer. Math., v. 17, 1971, pp. 367381. MR 45 #8002. MR 0298953 (45:8002)
 [17]
 B. L. HULME, "Onestep piecewise polynomial Galerkin methods for initial value problems," Math. Comp., v. 26, 1972, pp. 415426. MR 47 #9834. MR 0321301 (47:9834)
 [18]
 B. L. HULME, "Discrete Galerkin and related onestep methods for ordinary differential equations," Math. Comp., v. 26, 1972, pp. 881891. MR 47 #4448. MR 0315899 (47:4448)
 [19]
 P. M. HUMMEL & C. L. SEEBECK, JR., "A generalization of Taylor's expansion," Amer. Math. Monthly, v. 56, 1949, pp. 243247. MR 10, 516. MR 0028907 (10:516i)
 [20]
 C. M. KANG & K. F. HANSEN, "Finite element methods for reactor analysis," Nuclear Sci. and Engrg., v. 51, 1973, pp. 456495.
 [21]
 F. R. LOSCALZO & T. D. TALBOT, "Spline function approximations for solutions of ordinary differential equations," SIAM J. Numer. Anal., v. 4, 1967, pp. 433445. MR 36 #4808. MR 0221756 (36:4808)
 [22]
 F. R. LOSCALZO, "An introduction to the application of spline functions to initial value problems," Theory and Applications of Spline Functions (Proc. Seminar, Math. Res. Center, Univ. of Wisconsin, 1968), T.N.E. Greville (Editor), Academic Press, New York, 1969, pp. 3764. MR 39 #2334. MR 0240989 (39:2334)
 [23]
 J. T. ODEN, "A general theory of finite elements. Part II, Applications," Internat. J. Numer. Methods Engrg., v. 1, 1969, pp. 247259.
 [24]
 H. S. PRICE & R. S. VARGA, "Error bounds for semidiscrete Galerkin approximations of parabolic problems with applications to petroleum reservoir mechanics," Numerical Solutions of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N. C., 1968), G. Birkhoff and R. S. Varga (Editors), SIAMAMS Proc., Vol. II, Amer. Math. Soc., Providence, R. I., 1970, pp. 7494. MR 42 #1358. MR 0266452 (42:1358)
 [25]
 B. SWARTZ & B. WENDROFF, "Generalized finitedifference schemes," Math. Comp., v. 23, 1969, pp. 3749. MR 39 #1125. MR 0239768 (39:1125)
 [26]
 R. S. VARGA, "On higher order stable implicit methods for solving parabolic partial differential equations," J. Math. and Phys., v. 40, 1961, pp. 220231. MR 25 #3613. MR 0140191 (25:3613)
 [27]
 G. WARZEE, "Finite element analysis of transient heat conduction. Application of the weighted residual process," Comput. Methods Appl. Mech. Engrg., v. 3, 1974, pp. 255268.
 [28]
 O. B. WIDLUND, "A note on unconditionally stable linear multistep methods," BIT, v. 7, 1967, pp. 6570. MR 35 #6373. MR 0215533 (35:6373)
 [29]
 H. A. WRIGHT, "Some relationship between implicit RungeKutta, collocation and Lanczos methods, and their stability properties," BIT, v. 10, 1970, pp. 217227. MR 0266439 (42:1345)
 [30]
 O. C. ZIENKIEWICZ & C. J. PAREKH, "Transient field problems two and three dimensional analysis by isoparametric finite elements," Internat. J. Numer. Methods Engrg., v. 2, 1970, pp. 6171.
 [31]
 O. C. ZIENKIEWICZ, The Finite Element Method in Engineering Science, McGrawHill, London and New York, 1971. MR 47 #4518. MR 0315970 (47:4518)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L05
Retrieve articles in all journals
with MSC:
65L05
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197704316869
PII:
S 00255718(1977)04316869
Keywords:
Initial value problems,
ordinary differential equations,
piecewise polynomials,
collocation methods,
Astability
Article copyright:
© Copyright 1977
American Mathematical Society
